

Rich Edwards 2 October 2006

Protein Regular Expression
Search Tool

Richard J. Edwards (2006)

1: Introduction ... 3
1.1: Version ..3
1.2: Using this Manual ..3
1.3: Getting Help ..3
1.4: Why use PRESTO? ...4
1.5: Availability and Local Installation ...4

2: Fundamentals ... 5
2.1: Running PRESTO ...5
2.1.1: The Basics ...5
2.1.2: Interactivity and Verbosity settings..5
2.1.3: Other Options..5

2.2: Input ...6
2.2.1: Motif Input..6
2.2.2: Motif Filtering options...6
2.2.3: Searching with Mismatches ..7
2.2.4: Search Database ...7
2.2.5: Optional Input 1: Multiple Sequence Alignments7
2.2.6: Option Input 2: Taxonomic subgroupings...8

2.3: Output ...9
2.3.1: Basic Output..9
2.3.2: Information Content ...9
2.3.3: Expected Occurrence Statistics...9
2.3.4: Additional Taxonomic Conservation Output..10
2.3.5: Filtering results using PRESTO Statistics ..10
2.3.6: Optional Motif Information File ..11
2.3.7: Log Files..11

2.4: Information Content..11
3: Conservation Statistics...12
3.1: Conservation Output ...12
3.2: Conservation Scores..12
3.2.1: Absolute Conservation [conscore=abs]..12
3.2.2: Positional Scoring [conscore=pos]...13
3.2.3: AA Property Scoring [conscore=prop] ...13
3.2.4: Combined Scoring [conscore=all] ..13
3.2.5: Additional output: conservation score used..14

3.3: Additional Options...14
3.3.1: Motif ambiguity...14
3.3.2: Positional Weighting by Information Content14
3.3.3: Homology Weighting ..14
3.3.4: Gap Treatment ..15

3.4: Generating Alignments with GOPHER ...15
4: Appendices ...16
4.1: Appendix I: Command-line Options ..16

2 PRESTO

Rich Edwards 2 October 2006

4.1.1: Forking Options...16
4.2: Appendix II: Distributed Python Modules ...16
4.3: Appendix III: Log Files..16
4.4: Appendix IV: Troubleshooting...16
4.5: Appendix V: References...16

Protein Regular Expression Search Tool 3

Rich Edwards 2 October 2006

1: Introduction
Software manuals are boring: boring to write and probably even more boring to read. I have
therefore tried to keep this one concise. However, there is a good chance that the
pleiotropic affect of this is a lack of clarity and/or coherence. For this I apologise, and
encourage anyone out there to send in errata and/or suggested improvements. The
fundamentals should be covered in 2: Fundamentals, including 2.2: Input and 2.3:
Output. More details can be found in later sections and gluttons for punishment can get
even more information in 4: Appendices and the accompanying PEAT Appendices
documentation.

Like the software itself, this manual is a ‘work in progress’ to some degree. If the version
you are now reading does not make sense, then it may be worth checking the website to
see if a more recent version is available, as indicated by the 1.1 Version section of the
manual. Good luck.

Rich Edwards, 2006.

1.1: Version
This manual is designed to accompany PRESTO version 3.2.

The manual was last edited on 02 October 2006.

1.2: Using this Manual
As much as possible, I shall try to make a clear distinction between explanatory text (this)

and text to be typed at the command-prompt etc. Command prompt text will be written

in Courier New to make the distinction clearer. Program options, also called ‘command-

line parameters’, will be written in bold Courier New (and coloured red for fixed

portions or dark red for user-defined portions, such as file names etc.). Command-line

examples will be given in (purple) italicised Courier New. Optional parameters will

(where I remember) be [in square brackets]. Names of files will be marked in normal text

by (dark yellow) Bold Times New Roman.

1.3: Getting Help
Much of the information here is also contained in the PRESTO website
(http://bioinformatics.ucd.ie/shields/software/presto/) and the documentation of the Python
modules themselves. A full list of command-line parameters can be printed to screen using
the help option, with short descriptions for each one.

python presto.py help

If none of the above help, then please e-mail me (richard.edwards@ucd.ie) whatever
question you have. If it is the results of an error message, then please send me that and/or
the log file too. Usually, it will be a problem with the input files (possibly formatting) but
there are probably still a few bugs in there somewhere too.

4 PRESTO

Rich Edwards 2 October 2006

1.4: Why use PRESTO?
PRESTO is what the acronym suggests: a search tool for searching proteins for peptide
sequences or motifs using an algorithm based on Regular Expressions. The simple input and
output formats and ease of use on local databases make PRESTO a useful alternative to web
resources for high throughput studies. Additionally, if you are interested in the conservation
of a given motif, PRESTO can be given alignment files from which to calculate conservation
statistics during the search.

1.5: Availability and Local Installation
PRESTO can be run from the PRESTO webserver, available at
http://bioware.ucd.ie/~presto/.

PRESTO is also distributed as a number of open source Python modules as part of the PEAT
(Protein Evolution Analysis Toolkit) package. It should therefore work on any system with
Python installed without any extra setup required – simply copy the relevant files to your
computer and run the program (see 2.1: Running PRESTO, below).

If you do not have Python, you can download it free from www.python.org at
http://www.python.org/download/. The modules are written in Python 2.4. The Python
website has good information about how to download and install Python but if you have any
problems, please get in touch and I will help if I can.

All the required files should have been provided in the download zip file. Details can be
found at http://bioinformatics.ucd.ie/shields/software/peat/ and the accompanying PEAT
Appendices document. The Python Modules are open source and may be changed if
desired, although please give me credit for any useful bits you pillage. I cannot accept any
responsibility if you make changes and the program stops working, however!

Note that the organisation of the modules and the complexity of some of the classes is due
to the fact that most of them are designed to be used in a number of different tools. As a
result, not all the options listed in the __doc__() (help) will be of relevance. If you want

some help understanding the way the modules and classes are set up so you can edit them,
just contact me.

Protein Regular Expression Search Tool 5

Rich Edwards 2 October 2006

2: Fundamentals

2.1: Running PRESTO

2.1.1: The Basics

If you have python installed on your system (see Error! Reference source not
found.Availability and Local Installation), you should be able to run PRESTO directly
from the command line in the form:

python presto.py searchdb=FILENAME motifs=FILENAME

For the example provided in the distribution:

python presto.py searchdb=blastdb_eg.fas motifs=presto_eg.motifs

PRESTO does not currently have a menu-driven implementation but, if running in Windows

with an INI file (see below), you can just double-click the presto.py file to run.

IMPORTANT: If filenames contain spaces, they should be enclosed in double quotes:
searchdb=“example file”. That said, it is recommended that files do not contain

spaces as function cannot be guaranteed if they do.

2.1.2: Interactivity and Verbosity settings

By default, PRESTO will run through to completion without any user-interaction if given all
the options it needs. For more interaction with the program as it runs, use the argument
'i=1'

python presto.py searchdb=blastdb_eg.fas motifs=presto_eg.motifs i=1

Both the level of interactivity and the amount printed to screen can be altered, using the
interactivity [i=X] and verbosity [v=X] command-line options, respectively, where X is the

level from none (-1) to lots (2+). Although in theory i=-1 and v=-1 will ask for nothing

and show nothing, there is a good chance that some print statements will have escaped in
these early versions of the program.

Please report any irritations and suggestions for changes to what is printed at different
verbosity levels.

2.1.3: Other Options

At first, you will probably want to run the program with its default parameters. If you want
to change them, there are a number of parameters that can be set by the user and other
options. These are described in the relevant sections and summarised in 4.1: Command-
line Options. These may be given after the run command, as above, or loaded from one or

more *.ini files (see for PEAT Appendices for details).

6 PRESTO

Rich Edwards 2 October 2006

2.2: Input
The main input for PRESTO is a motif file and a fasta format search database. Optional input
for conservation analyses can be given to PRESTO in the form of protein multiple sequence
alignments.

2.2.1: Motif Input

The recommended motif input format is PRESTO format. This should have a single line per
motif, with the format:

Name Sequence # Comments

Comments are optional but anything after the # will be ignored.

Alternative allowed formats include: a fasta format file with motif/peptide names and
sequences in the usual fasta format; a raw list of peptides/motifs (in this case the name and
sequence will the same); SLiMDisc output; TEIRESIAS output; Slim Pickings output.
Additional input formats can be added on request

In either case, the motif should be a peptide sequence using the standard single letter
amino acid codes and the following regular expression rules:

� A = single fixed amino acid.

� [AB] = ambiguity, A or B. Any number of options may be given, e.g. [ABC] = A or B

or C.

� <R:m:n> = At least m of a stretch of n residues must match R, where R is one of the

above regular expression elements (single or ambiguity).

� [^A] = not A.

� X or . = Wildcard positions (any amino acid)

� R{n} = n repetitions of R, where R is any of the above regular expression elements.

� R{m,n} = At least m and up to n repetitions of R.

� (AB|CD) = AB or CD. For MSMS peptides (msms=T), this is also BA or DC.

� (ABC) = ABC in any order (BAC, CAB etc.).

� ^ = Beginning of sequence

� $ = End of sequence

E.g. [IL][^P]X{3}RG means: “leucine or isoleucine, followed by anything but proline,

followed by three residues, followed by arginine followed by glycine”.

E.g. (2) ^<KR:3:5>P means: “three of the first five amino acids must be lysine or arginine;

the sixth amino acid must be proline”.

2.2.2: Motif Filtering options

As well as manually editing the input files, there are a number of options for filtering the
motifs/peptides that PRESTO reads in. minpep=X and minfix=X will set the minimum

number of non-wildcard and fixed positions that the motif must contain, respectively. Some
motifs (or MSMS peptides) have leading or trailing wildcard positions. By default, these will
be included in any search as the information on the up or downstream region may be
desirable. (Because PRESTO returns the sequence of the matched region, these wildcards
can be used to return the sequence surrounding motif occurrences and/or to better control

Protein Regular Expression Search Tool 7

Rich Edwards 2 October 2006

the region included in any hydrophobicity/disorder etc. calculations.) To remove these
wildcard positions, use trimx=F.

Finally, motifs can be filtered out according to the expected number of occurrences in the
search database (see 2.3.3: Expected Occurrence Statistics) using the expcut=X

option. If the expected number of occurrences exceeds this threshold, then the motif is
removed from the search. This allows the user to restrict searches to the more unlikely
motifs.

2.2.3: Searching with Mismatches

PRESTO allows motifs and peptides to be searched with a number of mismatches allowed.
This is set by the mismatch=X,Y option, which can be used several times to setup

“mismatch bands”. This option allows X mismatches when the sequence has at least Y non-

wildcard positions. E.g. mismatch=1,6 mismatch=2,10 would allow one mismatch for

every sequence with 6+ non-wildcard positions and two mismatches for every sequence
with 10+ non-wildcard positions.

Mismatches are places in every possible non-wildcard position in the motif, including
degenerate positions. In the case of (AB) type elements, all possible combinations are tried
(AX,BX,XA,XB). Where repetitions are allowed, these are applied before any mismatches are
placed. E.g. P{1,2} with one mismatch would be searched with P, PP, X, PX and XP.

NB. Searching with mismatches can dramatically increase the run-time. When searching
large databases it is advisable to first perform a test run with a few sequences to calculate
approximate runtimes.

2.2.4: Search Database

The search database for PRESTO should be a fasta file of protein sequences and is identified
with the searchdb=FILENAME option. Fasta format is commonly used in bioinformatics

applications and a variety of subformats will be recognised. To get the most out of the
program, one of the set fasta formats from common sequence databases should be used.

The included manual for the rje_seq.py sequence manipulation module has more details on

formats and reformatting/filtering of input sequences.

2.2.5: Optional Input 1: Multiple Sequence Alignments

PRESTO is designed to be able to use the output of GOPHER (Edwards 2006) alignments of
orthologues to calculate the conservation of a given motif (see 3: Conservation
Statistics). Alternative sources for theses alignments can be used, as long as the format is
correct.

Alignments should be in FASTA format with descriptions on one line followed by one or more
lines containing the sequence. All sequences should be of the same length. The first word in
each description should be unique. e.g.

>Seq1 And its description

SEQUENCE-ONE-GOES-HERE

>Seq2

---GAPS--ARE--ALLOWED-

>Seq3

---BUT---ALL-SEQUENCES

>Seq4

MUST-BE-EQUAL--LENGTHS

The file should be named AccNum.X, where AccNum is the accession number of the

relevant protein in the search database, and X is given by the command alnext=X. Files

8 PRESTO

Rich Edwards 2 October 2006

should be found in a directory identified with the alndir=PATH command. This function

can be switched on using the usealn=T option.

2.2.6: Option Input 2: Taxonomic subgroupings

In addition to the general conservation statistics produced for the given alignments,
conservation calculations can be restricted to one or more taxonomic groups. This is
achieved using the conspec=LIST option, where LIST is a list of files containing the

UniProt species codes for the relevant grouping. Wildcards are allowed. Conservation
analysis is then limited to these species and additional columns produced in the output (see
below).

e.g. If only interested in the model organisms Human, Mouse, Rat, Chicken and Xenopus,

one could use the command conspec=model.spec_code (or conspec=*.spec_code),

where model.spec_code contains the species codes:

HUMAN

MOUSE

RAT

CHICK

XENLA

This would then produce additional output columns MODEL_CONS, MODEL_HOM,
MODEL_GLOB_ID and MODEL_LOC_ID (see below). Where multiple files were given, each
file would have its own set of output columns.

NB. The name all is reserved as a special key in PRESTO. Do not use
conspec=all.spec_code.

Protein Regular Expression Search Tool 9

Rich Edwards 2 October 2006

2.3: Output

2.3.1: Basic Output

The main output for PRESTO is a delimited file with search results:

� MOTIF = Motif name as given in input file

� LEN = Length of motif

� VARIANT = Variant of motif (closest) matching sequence

� MATCHSEQ = Matched sequence in Query

� MATCH_ID = Identity between match and closest variant (See 2.2.3: Searching with
Mismatches)

� MOTIF_CONS = Percentage conservation across homologues (see below)

� HOM_NUM = Number of homologues compared

� GLOB_ID = Mean global percentage identity between query protein and homologues

� LOC_ID = Mean local percentage identity between query protein and homologues across
region of match

� SA = Surface Accessibility prediction (*details to follow*)

� HYD = Eisenberg Hydrophobicity prediction (*details to follow*)

� HIT = Name or AccNum of hit sequence

� START_POS = Start Position of match in Hit

� END_POS = End position of match in Hit

2.3.2: Information Content

If motific=T then an additional information content “MOTIF_IC” statistic is output. This is

calculated as described in 2.4: Information Content.

2.3.3: Expected Occurrence Statistics

Unless the expect=F option is used, PRESTO will calculate an additional statistic:

� EXPECT = expected number of matches for that motif in the search database given its
size and amino acid composition

This is a fairly simple calculation based on the frequency of each amino acid (fa), the
number of sequences (NS) and the total number of amino acids (NA). For each position in a
motif, the probability of occurrence at any residue in the dataset (pi) is simply the sum of
the frequencies for the possible amino acids at that position:

pi = Σfa

The probability of the whole motif starting at any residue (pm) is therefore the product of pi
over all positions:

pm = Πpi

The expected number of occurrences for the motif in the dataset is therefore this number
multiplied by the possible number of positions at which the motif could start (Nm), which in
turn is the total number of amino acids in the dataset minus a number of positions per
sequence dependent on the length of the motif (L):

Nm = NA – (Ns(L-1))

10 PRESTO

Rich Edwards 2 October 2006

EXPECT = pmNm

2.3.4: Additional Taxonomic Conservation Output

In addition to the columns above, for each file of taxonomic species codes given (see 2.2.6:
Option Input 2: Taxonomic subgroupings), four more columns will be output:

� X_CONS = Percentage conservation across reduced set of homologues (see below)

� X_HOM = Number of reduced homologues compared

� X_GLOB_ID = Mean global percentage identity between query protein and reduced set of
homologues

� X_LOC_ID = Mean local percentage identity between query protein and reduced ser of
homologues across region of match

Where X is the leading part of the filename containing the species codes. Where multiple
files were given, each file would have its own set of output columns.

2.3.5: Filtering results using PRESTO Statistics

The statfilter=LIST command allows the user to filter results according to any statistic

included in the output, including conservation scores etc. The LIST is in the form

“stat1>a,stat2<b,stat3=c,stat4!=d” etc. and should either be a comma delimited list
given on the commandline, or contained in a separate file (named LIST e.g.

statcut=my_statcut_list.txt). If not a file name, enclose in double quotes or the

<> symbols will try to pipe input/output! The alllowed operators are:

Operator Description

> Filtered if the stat exceeds the cut-off

>= or => Filtered if the stat equals or exceeds the cut-off

< Filtered if the stat is lower than the cut-off

<= or =< Filtered if the stat is lower than or equal to the cut-off

= or == Filtered if the stat is equal to the cut-off

!= or <> Filtered if the stat is not equal to the cut-off

All these may be applied to any stat, included text fields. Stat names should match the
column headers of the output (case-insensitive). If a stat is given that is not recognised,
PRESTO will report an error but continue processing without that stat cut-off. Warning!
Applying > or < to strings should be used with caution, though Python does seem to
process them consistently with alphabetical sorting.

Protein Regular Expression Search Tool 11

Rich Edwards 2 October 2006

2.3.6: Optional Motif Information File

In addition to the main output, the motinfo=FILE command will output a motif summary

table into the specified filename. This file consists of the following fields:

Field Description

Motif The name of the motif.

Pattern The regular expression pattern of the motif (see 2.2.1: Motif Input).

Description The description of the motif.

MaxLength Maximum length of the motif in terms of non-wildcard positions.

MinLength Minimum length of the motif in terms of non-wildcard positions.

FixLength Maximum Length of motif in terms of fixed positions.

FullLength Maximum length of the motif, including wildcard positions.

Expect The expected number of times the motif will occur in the search database
given (searchdb=FILE).

IC Information Content of motif (if motific=T).

2.3.7: Log Files

The presto log file records information that may help subsequent interpretation of results or
identify problems. Probably it’s most useful content is any error messages generated. By

default the log file is presto.log but this can be changed with the log=FILE option. Logs

will be appended unless the newlog option is used. (See 4.3: Appendix III: Log Files

for details.)

2.4: Information Content
Information content is calculated for each motif based on a uniform distribution of amino
acids and re-scaled to give a value of 1.0 per fixed position and 0.0 for a wildcard.
Ambiguous positions are given a value between 0.0 and 1.0:

ICi = [log2(0.05) – log2(1/fa)] / log2(0.05),

where ICi is the information content for position i and fa is the number of possible amino
acids at position i. The information content for the motif is simply this score summed over all
positions.

12 PRESTO

Rich Edwards 2 October 2006

3: Conservation Statistics

3.1: Conservation Output
An important function of PRESTO that sets it apart from other such tools is the ability to
calculate conservation statistics for each match, provided alignment files are provided. (see
2.2.5: Optional Input 1: Multiple Sequence Alignments). If alignments do not exist,
GOPHER (Edwards 2006) can be used to generate them (see 3.4: Generating
Alignments with GOPHER). If the identified file is not actually aligned, then RJE_SEQ will
try to align the proteins using MUSCLE or ClustalW.

For each sequence, these alignments are used to generate the global percentage identity
statistic:

� GLOB_ID = Mean global percentage identity between query protein and homologues.
This is calculated direct from the alignments, excluding matches of Xs, and is the
percentage of query residues that match the aligned residue in the homologue. (Note
that this is an asymmetrical measurement and the percentage of the homologue that
aligns with the query may be very different if the sequences are of different lengths.)

Other conservation statistics are calculated individually for each occurrence of the motif.
These are based on the homologous protein sequences available at that site. Any
homologues with masked (X) residues that coincide to non-wildcard positions of the motif
occurrence will be ignored from conservation calculations. Gaps, however, shall be treated
as divergence unless the alngap=F option is used, in which case 100% gapped regions of

homologues are also ignored (see 3.3.4: Gap Treatment). These additional statistics are:

� MOTIF_CONS = This is the conservation score across available homologues for that
occurrence

� HOM_NUM = Number of available homologues for that occurrence

� LOC_ID = Mean local percentage identity between query protein and available
homologues across region of match

3.2: Conservation Scores
Currently, there are three main Conservation scores implemented in PRESTO, which can be
selected with the conscore=X option:

3.2.1: Absolute Conservation [conscore=abs]

For absolute conservation, PRESTO first identifies the regions of the alignment that
correspond to matches in the Query protein. Each aligned sequence is then taken in turn
and the relevant region extracted, de-gapped, and compared to the original regular
expression, i.e. the degenerate motif. The conservation score is then the proportion of these
homologues in which the degenerate motif is conserved (Figure 1). (To calculate
conservation of the specific occurrence of the motif, use the consamb=F option.)

Protein Regular Expression Search Tool 13

Rich Edwards 2 October 2006

Figure 1. PRESTO Absolute Conservation Example. Three motifs are found in the query protein
(marked with blue stars). This protein is ignored for conservation statistics. The black boxes represent
the region of the alignment considered for each match. These matches in the homologues are then
compared to the original regular expression. (a) Motif LX{1,2}G is 100% conserved because, once
gaps are removed, all four homologous sequences match the degenerate motif. (b) For motif
Q[KR]{2}XY, one sequence does not match the degenerate motif and the query is excluded from the
calculation, giving a conservation score of ¾ = 75%. (c) Only one of the homologues matches the
motif. By default, all four sequences are considered, giving a conservation score of ¼ = 25%. If the
alngap=F option is used, the 100% gapped sequence is ignored and the conservation is therefore

1/3 = 33.3%

3.2.2: Positional Scoring [conscore=pos]

Positional scoring uses a graded scoring system, where each sequence gets a score between
0 (no positions conserved) and 1 (all positions conserved). By default, each matching amino
acid contributes a score of 1.0 and the sum over all positions is divided by the number of
positions. For a degenerate site (when the default consamb=T option is used), the

sequence must match any possible amino acid at that site.

The scoring matrix used for this scoring can be altered using the posmatrix=FILE

command, where FILE contains either lists of equivalent amino acids on each line (e.g. FYW
would mean that any of F, Y or W would score 1.0 vs. any other of F, Y or W), or an all-by-
all matrix of amino acids and their conservation scores, e.g. this might give F-F a score of
1.0 and F-Y a score of 0.5. This allows the method to be customised according to user-
determined rules. In this case, the best score between the sequence and any variant of a
degenerate position is used (unless consamb=F).

3.2.3: AA Property Scoring [conscore=prop]

This is really just a specific example of the posmatrix=FILE command, where an amino

acid property matrix (aaprop=FILE) is converted into a similarity matrix ranging from 0.0

to 1.0. By default, the property matrix of Livingstone and Barton is used (aaprop.txt)

(Livingstone and Barton 1993). See the PEAT Appendices for more information on this
matrix.

3.2.4: Combined Scoring [conscore=all]

Under this scoring, the MOTIF_CONS output is the mean of all three methods. In addition,
statistics are generated for each of the individual scores:

14 PRESTO

Rich Edwards 2 October 2006

� CONS_POS = Positional conservation score across homologues.

� CONS_ABS = Absolute conservation score across homologues.

� CONS_PROP = Property-based conservation score across homologues.

The same additional options are applied to all three methods, with the exception that
Positional Weighting by Information Content has no effect on the absolute conservation
method.

3.2.5: Additional output: conservation score used

Because there are so many options, it is sometimes desirable to have a record of the
conservation score used to generate a set of results. The consout=T option outputs an

additional CONS_METHOD result field containing information on the conservation score used
in the form method_wX_aY_iZ, where method is the method name (conscore=method)

X is the weighting used (consweight=X), Y is whether ambiguity is used (consamb=T/F)

and Z is whether positional weighting by information content is used (consinfo=T/F).

These options are described below.

3.3: Additional Options

3.3.1: Motif ambiguity

By default, PRESTO will calculate conservation using the full degeneracy of the input motif.
If consamb=F is used, the particular matching variant will be used instead. E.g. in Figure

1(b), the conservation of QKXXY would be calculated, rather than Q[KR]XXY. When the
ambcut=X option is used, degenerate sites with more ambiguity than ambcut will be treated

as wildcards the conservation of a particular variant (i.e. not count towards the conservation
score).

3.3.2: Positional Weighting by Information Content

The consinfo=T option (the default) weights the contribution of different positions of the

motif proportionally to their information content (IC). The IC of a position ranges from 0 for
a wildcard position to 1 for a fixed position (see 2.4: Information Content). For a fully
fixed motif, all positions will have equal weighting. Otherwise, ambiguous positions make a
smaller contribution to the score, which is normalised such that a sequence that is
conserved at every position of the motif gets a score of 1.0. If consinfo=F, all positions

contribute equally. When the ambcut=X option is used, degenerate sites with more

ambiguity than ambcut will be treated as wildcards for IC weighting (i.e. not count towards
the conservation score). If the “Absolute” motif conservation score is used, this weighting
has no affect.

3.3.3: Homology Weighting

The consweight=X option controls how the conservation scores are weighted according

the similarity of the homologues to the query. For each sequence s, the weighting Ws is
calculated using the global percentage identity of the query versus that sequence, Is, raised
to the power of the consweight=X option, ω:

Ws = Is
ω

 / ΣWs

When ω=0 (the default), Ws = 1 and all sequences are treated equally.

For ω=1, Ws = Is, which up-weights the contribution of sequences closely related to the
query. This means that the comparison of conservation scores will tend to penalise

Protein Regular Expression Search Tool 15

Rich Edwards 2 October 2006

divergence in closely related sequences and will not be so heavily influenced by incorrect
orthology assignment of distantly-related sequences. This weighting can be increased
further with ω > 1.

For ω=-1, Ws = 1/Is, which up-weights the contribution of sequences distantly related to the
query. This means that the comparison of conservation scores will tend to promote
conservation in distantly related sequences but may be influenced by incorrect orthology
assignment, which tends to be more of a problem for distantly-related sequences. This

weighting can be increased further with ω < -1.

3.3.4: Gap Treatment

By default, motifs that match to 100% gaps in a homologue will be treated as divergence
away from a motif and reduce the score. If, however, there are a lot of missing or truncated
sequences (in a draft genome, for example,) the alngap=F option can be used to ignore

these sequences for the relevant calculations (see Figure 1(c)). Note that the calculation
used pretends that these homologues are not present at all, and does not count them as
conserved.

3.4: Generating Alignments with GOPHER
The program GOPHER (Edwards 2006) is provided in the download and can be called as
part of the PRESTO search using the gopher=T option. Details of how GOPHER works can

be found in the GOPHER documentation. GOPHER will generate alignments in the directory
specified by the alndir=PATH option. If this does not point to a subdirectory named ALN,

one will be created and GOPHER alignments will be placed in here (The alndir=PATH

parameter will be updated accordingly). Additional GOPHER output and directories will be
created in the parent directory. If not already set as such, the alnext=X option will be set

to orthaln.fas.

16 PRESTO

Rich Edwards 2 October 2006

4: Appendices

4.1: Appendix I: Command-line Options
General details on command-line options can now be found in the PEAT Appendices
document distributed with this program. A full list of options can be found in the distributed

readme.txt and readme.html files.

4.1.1: Forking Options

PRESTO can run multiple forks at a time, processing a single sequence with each fork. This
will speed up execution on a multiple-processor machine. Forking is controlled by three main
parameters:

� forks=X sets the number of processes to fork at any given time.

� killforks=X sets the number of seconds without any activity from any forks before

the program will commit suicide.

� noforks=T/F sets whether forks are used at all.

IMPORTANT: Forking has been implemented for UNIX only. (Python does not support
forking in Windows.) If running in windows, use the win32=T, forks=0 or noforks=T

options.

4.2: Appendix II: Distributed Python Modules
Details can be found in the distributed readme.txt and readme.html files as well as the

accompanying PEAT Appendices document.

4.3: Appendix III: Log Files
See the accompanying PEAT Appendices document for general information on log files.

4.4: Appendix IV: Troubleshooting
There are currently no specific Troubleshooting issues arising with PRESTO. Please see
general items in the PEAT Appendices document and contact me if you experience any
problems not covered.

4.5: Appendix V: References
Edwards, R.J. (2006) GOPHER: Generation of Orthologous Proteins using High-throughput
Evolutionary Relationships. http://bioinformatics.ucd.ie/shields/software/gopher/
Livingstone, C.D. et al. (1993) Protein sequence alignments: a strategy for the hierarchical
analysis of residue conservation, Comput Appl Biosci, 9, 745-756.

