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1. Introduction 

This manual gives an overview of SLiMFinder as implemented in the slimfinder.py module. Because 
there are many options, this manual will probably not be fully comprehensive but aims to cover the 
basics and the most useful of the more advanced stuff. If anything is missing or needs clarification, 
please contact me. The fundamentals are covered in Chapter 2, Fundamentals, including input and 
output details. Later sections give more details on how the methods work and statistics are generated. 

General details about Command-line options can be found in the PEAT Appendices document 
included with this download.  

SLiMFinder Version 4.0 is considerably more integrated with other tools (e.g. SLiMSearch, 
CompariMotif), which are now all packaged together as SLiMSuite. Missing details of command-line 
options can sometimes be found in these other manuals. Over the coming months, I hope to 
consolidate the help for all these applications into a single SLiMSuite manual. In the meantime, do 
contact me if you need more assistance. 

Like the software itself, this manual is a ‘work in progress’ to some degree. If the version you are now 
reading does not make sense, then it may be worth checking the website to see if a more recent version 

is available, as indicated by the Version section of the manual. You can also check the readme on the 
website for up-to-date options etc. In particular, default values for options are subject to change and 

should be checked in the readme. 

Good luck. 

Rich Edwards, 2010. 

1.1. Version 

This manual is designed to accompany SLiMFinder version 4.0.  

The manual was last edited on 11 February 2010. 

1.2. Using this Manual 

As much as possible, I shall try to make a clear distinction between explanatory text (this) and text to 
be typed at the command-prompt etc. Command prompt text will be written in Courier New to 
make the distinction clearer. Program options, also called ‘command-line parameters’, will be 
written in bold Courier New (and coloured red for fixed portions or dark red for user-

defined portions, such as file names etc.). Command-line examples will be given in (purple) 
italicised Courier New. Optional parameters will (if I remember) be [in square brackets]. 

Names of files will be marked in normal text by (blue-grey) Times New Roman. 

1.3. What is SLiMFinder? 

Short linear motifs (SLiMs) in proteins are functional microdomains of fundamental importance in 
many biological systems. SLiMs typically consist of a 3 to 10 amino acid stretch of the primary protein 
sequence, of which as few as two sites may be important for activity, making identification of novel 
SLiMs extremely difficult. In particular, it can be very difficult to distinguish a randomly recurring 
"motif" from a truly over-represented one. Incorporating ambiguous amino acid positions and/or 
variable-length wildcard spacers between defined residues further complicates the matter. 

SLiMFinder is an integrated SLiM discovery program building on the principles of the SLiMDisc 
software for accounting for evolutionary relationships (Davey et al. 2006). SLiMFinder is comprised 
of two algorithms: 

1. SLiMBuild identifies convergently evolved, short motifs in a dataset. Motifs with fixed amino acid 
positions are identified and then combined to incorporate amino acid ambiguity and variable-length 
wildcard spacers. Unlike programs such as TEIRESIAS (Rigoutsos & Floratos 1998), which return all 
shared patterns, SLiMBuild accelerates the process and reduces returned motifs by explicitly 
screening out motifs that do not occur in enough unrelated proteins. For this, SLiMBuild uses the 
"Unrelated Proteins" (UP) algorithm of SLiMDisc in which BLAST is used to identify pairwise 
relationships. Proteins are then clustered according to these relationships into "Unrelated Protein 
Clusters" (UPCs), which are defined such that no protein in a UPC has a BLAST-detectable 
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relationship with a protein in another UPC. If desired, SLiMBuild can be used as a replacement for 
TEIRESIAS in other software (use teiresias=T slimchance=F to emulate TEIRESIAS output). 

2. SLiMChance estimates the probability of these motifs arising by chance, correcting for the size 
and composition of the dataset, and assigns a significance value to each motif. Motif occurrence 
probabilities are calculated independently for each UPC, adjusted the size of a UPC using the 
Minimum Spanning Tree algorithm from SLiMDisc. These individual occurrence probabilities are 
then converted into the total probability of seeing the observed motifs the observed number of 
(unrelated) times. These probabilities assume that the motif is known before the search. In reality, 
only over-represented motifs from the dataset are looked at, so these probabilities must be adjusted 
for the total number of motifs in the dataset. SLiMChance calculates the size of the “motif space” 
searched and corrects the significance accordingly. The returned corrected probability is an estimate 
of the probability of seeing ANY motif with that significance (or greater) from the dataset.  

Where significant motifs are returned, SLiMFinder will group them into Motif "Clouds", which consist 
of physically overlapping motifs (2+ non-wildcard positions are the same in the same sequence). This 
provides an easy indication of which motifs may actually be variants of a larger SLiM and should 
therefore be considered together. Where pre-known motifs are also of interest, these can be given with 
the slimcheck=MOTIFS option and will be added to the output. 

Additional Motif Occurrence Statistics, such as motif conservation, are handled by the rje_slimlist and 

rje_slimcalc modules. Please see the documentation for these modules for a full list of commandline 
options. Note that occfilter=LIST does affect the motifs returned by SLiMBuild and thus the 

TEIRESIAS output (as does min. IC and min. Support) but the overall Motif slimfilter=LIST only 

affects SLiMFinder output following SLiMChance calculations. 

1.4. Getting Help 

Much of the information here is also contained in the documentation of the Python modules 
themselves. A full list of command-line parameters can be printed to screen using the help option, 

with short descriptions for each one: 

python slimfinder.py help 

General details about Command-line options can be found in the PEAT Appendices document 
included with this download. Details of command-line options specific to Slim Pickings can be found 

in the distributed readme.txt and readme.html files. 

If still stuck, then please e-mail me (r.edwards@soton.ac.uk) whatever question you have. If it is 

the results of an error message, then please send me that and/or the log file (see  2.3) too.  

1.4.1. Something Missing? 

As much as possible, the important parts of SLiMFinder are described in detail in this manual. If 
something is not covered, it is generally not very important and/or still under development, and can 
therefore be safely ignored. If, however, curiosity gets the better of you, and/or you think that 
something important is missing (or badly explained), please contact me. 

1.5. Citing SLiMFinder 

Please cite the main SLiMFinder publication (Edwards et al. 2007):  

� Edwards RJ, Davey NE and Shields DC (2007). SLiMFinder: A Probabilistic Method for Identifying 
Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS ONE, 2, e967. 

When using advanced “SigV” and/or “SigPrime” statistics, please cite: 

� Davey NE, Edwards RJ and Shields DC (2010). Estimation and efficient computation of the true 
probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC 
Bioinformatics 11: 14.  

When using RLC conservation masking ( 4.1.6), please cite the RLC paper: 

� Davey NE, Shields DC and Edwards RJ (2009). Masking residues using context-specific 
evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 25(4): 
443-50.  
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When using alignments generated using GOPHER (Edwards 2006), please cite the SLiMDisc 
Webserver paper (Davey et al. 2007). Disorder predictions should cite IUPRED (Dosztanyi et al. 
2005). 
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2. Fundamentals 

 

2.1. Running SLiMFinder 

2.1.1. The Basics 

If you have python installed on your system, you should be able to run SLiMFinder directly from the 
command line in the form: 

python slimfinder.py  

By default, SLiMFinder will run on all *.dat and *.fas files in the run directory. To run on a single file, 
use the seqin=FILE option. For the example provided in the distribution: 

python slimfinder.py seqin=slim_eg.fas  

A SLiMFinder webserver is also available at http://bioware.ucd.ie. See chapter  8 for details.  

2.1.2. Options 

Command-line options are suggested in the following sections. General details about Command-line 

options can be found in the PEAT Appendices document included with this download. Details of 

command-line options specific to Slim Pickings can be found in the distributed readme.txt and 

readme.html files. These may be given after the run command, as above, or loaded from one or more 

*.ini files (see PEAT Appendices for details). 

2.2. Input 

Basic input for SLiMFinder is one or more sequence files in Fasta or UniProt format. This input will be 

masked according to the program’s settings. See Chapter  4 for details. Sequence names may be altered 

by the program for compatibility (using the gnspacc=T option of rje_seq.py (see RJE_SEQ Manual 
for details). 

2.2.1. Optional Input I: Amino acid frequency files 

SLiMChance can optionally take external amino acid frequency files for its probability calculations, 
using the aafreq=FILE option. This can either be a fasta format sequence file, or a plain text file 

containing amino acid frequencies in two columns, with the headings “AA” and “FREQ”, e.g.: 

AA      FREQ 

A       0.055854 

C       0.020012 

… 

Y       0.026583 

2.2.2. Optional Input II: Specific Motifs of Interest 

SLiMFinder has a slimcheck=FILE option to search for specific motifs during SLiMFinder runs, 

regardless of their significance. This should be a file with a format recognised by SLiMSearch 
(Edwards 2007), which is a replacement for PRESTO (Edwards 2006) (see PRESTO documentation 
for details), which in its simplest form is a plain list of motif patterns. If there are not variable-length 
wildcards ({m,n}) then FILE can be replaced with a comma-separated list of motifs of interest. The 

*.motifs file produced if extras=T (see below) is in a compatible format and can be used directly. 

SLiMCheck motifs are added to the end of the main results file (see  2.3.1 and  6.1) but are not given a 
rank. For a more detailed analysis of sequences with a dataset of known motifs, please use 
SLiMSearch, which has many of the same input and processing options as SLiMFinder (Edwards 
2007). 
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2.2.3. Optional Input III: Protein Clusters 

SLiMFinder uses BLAST (Altschul et al. 1990) and GABLAM (Edwards & Davey 2006) to cluster 

related proteins into “Unrelated Protein Clusters” (UPCs) as described in  3.3.3. UPCs are treated as 
units such that multiple SLiM occurrences within a UPC are treated as a single occurrence. The UPCs 

generated by SLiMFinder are output into a summary file (see  2.3.2). If, for whatever reason, the user 
wishes to define their own UPCs, this file can be replaced with one in the same format. This file should 
be in one of the paths indicated by the resdir=PATH or buildpath=PATH options. 

This might be particularly useful in cases where the homology detection by BLAST is wrong. (Either 
insufficiently sensitive to weak relationships or confused by low complexity regions etc. By default the 
BLAST complexity filter is on but this can be toggled with blastf=T/F. BLAST sensitivity can be 

altered using blaste=X to adjust the e-value threshold. (1e-4 by default.)) 

2.2.4. Optional Input IV: Query Sequences 

SLiMFinder can be limited to return only those motifs in a given sequence or set of sequences. This is 
set by query=LIST, where LIST is a comma-separated list of protein names (just the first word) or 

ID/accession numbers (for standard input formats). (e.g. query=P04049,P30307) This can be very 
powerful in larger datasets as it will increase the significance of returned motifs based on how likely 

they are to occur in the query sequence. (See  5.3 for details.) 

This method has been further extended to allow multiple groups and definition options, using the 
focus=FILE option. This file should be in plain text format, consisting of a number of focus group 

entries: 

#GroupName:Type  

Entry1 

… 

EntryN 

// 

Each GroupName must be unique and represents a single Focus group. (The query=LIST option 

actually generates a “Query” focus group.) The Type refers to an rje_seq filter type 
(Seq/Spec/Desc/DB/Acc). Groups are actually made using the goodTYPE=LIST filter of RJE_SEQ 

to pull out the sequences of interest – see the RJE_SEQ Manual for details. Entry 1 to N then list the 
N entries to be added to this group. Note that each entry could pull out multiple sequences. E.g. to put 
all Human sequences from your dataset into a Group “Homo_sapiens” (assuming a properly 
formatted file as input, which would have “HUMAN” in each human sequence name), you could use: 

#Homo_sapiens:Seq  

HUMAN 

// 

Most commonly, Type would be “Acc” and each Entry would be an Accession Number of an input 
protein. Where multiple groups are given, the min. number of groups that must contain a returned 
motif is set with focusocc=X. If X is 0 (the default) then a motif must be present in all groups. 

2.2.5. Optional Input V: Protein Alignments 

To use some of the advanced SLiMFinder functions, such conservation calculations and alignment 
outputs, SLiMFinder must be given the location and naming convention for protein alignments. These 
can also be generated by SLiMFinder using GOPHER (Edwards 2006) and a sequence database. 

Details are given in  7.3. 
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2.3. Output 

SLiMFinder has multiple outputs, many of which are optional. An overview of the possible outputs is 
given here. Unless otherwise specified, only motifs meeting the probcut=X threshold will be output. 

It is also possible to restrict output to the top X motifs, using topranks=X. Note that both these 

options apply to a dataset, so to return the top X motifs regardless of their probability, set probcut 
very high (e.g. probcut=1.0). With the exception of the main results table, all (dataset-specific) 
output is created in the directory specified by resdir=PATH. 

NB. To output this file into a directory other than the run directory, use the full path in the name (e.g. 
resfile=SLiMFinder/slimfinder.csv). 

2.3.1. Main SLiMFinder Results Table 

The main output of SLiMFinder is a single delimited text file containing a list of significant motifs and 

dataset statistics for all datasets analysed. By default, this is a comma-separated *.csv file specified by 

resfile=FILE [default slimfinder.csv – set resfile=None for no output]. Name this file *.csv for 

comma separated output and *.tdt for tab delimited output. All other extensions will result in space-

delimited output. If no extension (*.*) is found then *.csv will be appended. (E.g. resfile=eg will 

output to eg.csv.) 

2.3.2. Sequence relationship output 

Sequence relationships are defined using BLAST (Altschul et al. 1990) and GABLAM (Edwards & 

Davey 2006). A *.self.blast file is created during this process, containing the actual BLAST 
alignments. This is deleted unless extras=T. This file is converted into a GABLAM distance matrix, 

which is output into a tab-delimited distance matrix file *.dis.tdt. If extras=T then a PHYLIP format 

distance matrix is also output as *.phydis.txt, which can be used to draw trees with PHYLIP 
(Felsenstein 2005) (using RJE_TREE (Edwards 2006) if desired). This matrix in turn is used to 

define Unrelated Protein Clusters (UPCs; see  3.3.3), which are output to a relationship summary file 

*.upc. This file lists each cluster, the number of sequences it contains, the MST-corrected size of the 

UPC (see  3.3.3) and the short names of the sequences in the UPC. Note that when this file exists, it 
will be read for a dataset instead of regenerating with BLAST (unless force=T). This means that it is 

possible to create custom UPC groupings if desired by hacking this file (see  6.2.1). 

2.3.3. SLiMDisc Output 

If slimdisc=T then SLiMFinder will attempt to emulate SLiMDisc (Davey et al. 2006) output, 

producing *.rank and *.dat.rank files as well as a TEIRESIAS (Rigoutsos & Floratos 1998) format 
output (below).  

2.3.4. TEIRESIAS Output 

If teiresias=T then SLiMFinder will output a *.masked.fas fasta file of the masked sequences and a 

*.out file of all motifs exceeding the given minocc=X and minic=X thresholds in TEIRESIAS 

(Rigoutsos & Floratos 1998) output format. This is an additional output. To cancel the normal output, 

set slimchance=F and slimdisc=F. If slimdisc=F the *.masked.fas fasta file will simply be called 

*.fasta (to emulate SLiMDisc). 

2.3.5. Extra Dataset-specific Output 

If extras=T then a number of additional data files are created in the directory specified by 

resdir=PATH in addition to the files described above. These outputs are listed in Table  2.1 and 

described in more detail in Chapter  0. 
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Table  2.1. List of optional extra dataset-specific SLiMFinder outputs. 

File Description Requirements 

*.rank Text file containing significant motifs and a reduced (tab-delimited) 
data output from the main results file 

None 

*.cloud.txt Text file containing extra information on the significant motif “clouds”, 
including the sequences containing motifs in each cloud and their 
overlap in terms of sequence coverage. 

1+ Significant SLiMs 

*.occ.csv Comma-separated file listing the individual occurrences of these motifs 
(and their stats) 

1+ Significant SLiMs 

*.motifaln.fas Alignment file of each significant motif across its occurrences in the 
context of the parent sequences 

*.maskaln.fas Same as *.motifaln.fas except that the parent sequences are masked 

1+ Significant 
SLiMs. GOPHER 
and/or alignments 
for orthologues 

*.mapping.fas Fasta file containing sequences for each input sequence. These 
sequences are present in threes for each input sequence: 
1. The significant motifs found in that sequence, aligned to (2) and (3) 
2. The full-length unmasked sequence 
3. The full-length masked sequence 

1+ Significant SLiMs 

*.motifs Plain text file in PRESTO-compatible format. This file can be used 
directly with the slimcheck=FILE option to search for specific motifs 
during SLiMFinder runs. (Note that this file also includes any motifs 
given by the slimcheck=FILE option for this run!) 

1+ Significant SLiMs 
and/or slimcheck= 
FILE motifs 

*.compare.tdt Results from an all-by-all CompariMotif (Edwards et al. 2008) analysis 
of significant and slimcheck=FILE motifs to identify similar patterns. 

1+ Significant SLiMs 
and/or slimcheck= 
FILE motifs 

*.xgmml This outputs a file in XGMML format that can uploaded into 
Cytoscape (Shannon et al. 2003) for visualisation. All returned SLiMs 
and all proteins are present as nodes. CompariMotif matches between 
SLiMs, UPC relationships between proteins, and occurrences of SLiMs 
in proteins are all marked as edges. 

None. (Proteins only 
if no significant 
SLiMs.) 

*cloud.xgmml This is the same as the basic *.xgmml file, except that returned SLiMs 
are compressed into clouds, represented by their most significant 
member. 

1+ Significant SLiMs 

2.4. Commandline Options 

Table  2.2 lists the commandline options for SLiMFinder (See also  3.1 and Figure  3.1). Please see also 

the PEAT Appendices document for additional general commandline options and the RJE_SEQ 

Manual for further input data options. The documentation (help) for rje_slimcalc.py also gives more 

details on options for additional SLiM statistic calculations and filtering (See Chapter  7). Beginners 
will probably want to leave the default settings unchanged. 

Table  2.2. SLiMFinder Commandline Options. 

Option Description Default 

 Basic Input/Output Options  

seqin=FILE Sequence file to search [None] 

batch=LIST List of files to search, wildcards allowed. (Over-ruled by 
seqin=FILE) 

[*.dat,*.fas] 

maxseq=X Maximum number of sequences to process [500] 

maxupc=X Maximum UPC size of dataset to process [0] 

walltime=X Time in hours before program will abort search and exit [1.0] 

resfile=FILE If FILE is given, will also produce a table of results in resfile [slimfinder.csv] 

resdir=PATH Redirect individual output files to specified directory [SLiMFinder/] 

buildpath=PATH Alternative path to look for existing intermediate files [SLiMFinder/] 
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Option Description Default 

force=T/F Force re-running of BLAST, UPC generation and SLiMBuild [False] 

pickup=T/F Pick-up aborted batch run by identifying last dataset in resfile. [False] 

 SLiMBuild Options I: Evolutionary Filtering  

efilter=T/F Whether to use evolutionary filtering [True] 

blastf=T/F Use BLAST Complexity filter when determining relationships [True] 

blaste=X BLAST e-value threshold for determining relationships [1e
-4

] 

altdis=FILE Alternative all by all distance matrix for relationships [None] 

gablamdis=FILE Alternative GABLAM results file (!!!Experimental feature!!!) [None] 

homcut=X Max number of homologues to allow (to reduce large multi-
domain families) 

[0] 

 SLiMBuild Options II: Input Masking  

masking=T/F Master control switch to turn off all masking if False [True] 

consmask=T/F Mask residues based on relative conservation. [False] 

dismask=T/F Whether to mask ordered regions (see rje_disorder for options) [False] 

ftmask=T/F UniProt features to mask out  [EM,DOMAIN,TRA
NSMEM] 

imask=T/F UniProt features to inversely ("inclusively") mask (Seqs MUST 
have 1+ features) 

[] 

compmask=X,Y Mask low complexity regions (same AA in X+ of Y consecutive 
aas) 

[5,8] 

casemask=X Mask Upper or Lower case of input sequence (see  4.1.5) [None] 

motifmask=X List (or file) of motifs to mask from input sequences [] 

metmask=T/F Masks the N-terminal M (can be useful if termini=T) [True] 

aamask=LIST Masks list of AAs from all sequences (reduces alphabet) [] 

posmask=LIST Masks list of position-specific aas, where list = pos1:aas,pos2:aas [2:A] 

 SLiMBuild Options III: Basic Motif Construction  

termini=T/F Whether to add termini characters (^ & $) to search sequences [True] 

minwild=X Min. no. of consecutive wildcard positions to allow [0] 

maxwild=X Max. no. of consecutive wildcard positions to allow [2] 

slimlen=X Maximum length of SLiMs to return (no. non-wildcard positions) [5] 

minocc=X Minimum number of unrelated occurrences for returned SLiMs. 
(Proportion of UP if < 1) 

[0.05] 

absmin=X Used if minocc<1 to define absolute min. UP occ [3] 

alphahelix=T/F Special i, i+3/4, i+7 motif discovery. (!!!Experimental!!!) [False] 

 SLiMBuild Options IV: Ambiguity  

preamb=T/F Whether to search for ambiguous motifs during motif discovery [True] 

ambocc=X Min. UP occurrence for subvariants of ambiguous motifs (minocc 
if 0 or > minocc) 

[0.05] 

absminamb=X Used if ambocc<1 to define absolute min. UP occ [2] 

equiv=LIST List (or file) of TEIRESIAS-style ambiguities to use [AGS,ILMVF,FYW,
FYH,KRH,DE,ST] 

wildvar=T/F Whether to allow variable length wildcards [True] 

combamb=T/F Whether to search for combined amino acid degeneracy and 
variable wildcards 

[False] 

 SLiMBuild Options V: Advanced Motif Filtering  

musthave=LIST Returned motifs must contain one or more of the AAs in LIST. [] 

query=X Return only SLiMs in the Query sequence X  [None] 

focus=FILE FILE containing focal groups for SLiM return [None] 

focusocc=X Motif must appear in X+ focus groups (0 = all) [0] 
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Option Description Default 

 SLiMChance Options   

slimchance=T/F Execute main SLiMFinder probability method and outputs [True] 

probcut=X Probability cut-off for returned motifs [0.1] 

maskfreq=T/F Whether to mask input before any analysis, or after frequency 
calculations 

[True] 

aafreq=FILE Use FILE to replace individual sequence AAFreqs (FILE can be 
sequences or aafreq) 

[None] 

aadimerfreq=FILE Use empirical dimer frequencies from FILE (fasta or *.aadimer.tdt) 
(!!!Experimental!!!) 

[None] 

negatives=FILE Multiply raw probabilities by under-representation in FILE 
(!!!Experimental!!!) 

[None] 

smearfreq=T/F Whether to "smear" AA frequencies across UPC rather than keep 
separate AAFreqs 

[False] 

seqocc=T/F Whether to upweight for multiple occurrences in same sequence 
(heuristic) 

[False] 

probscore=X Score to be used for probability cut-off and ranking 
(Uncorrected/Sig) 

[Sig] 

 Output Options I: Output Data  

clouds=X Identifies motif "clouds" which overlap at 2+ positions in X+ 
sequences (0=minocc) 

[2] 

runid=X Run ID for resfile (allows multiple runs on same data) [DATE:TIME] 

logmask=T/F Whether to log the masking of individual sequences [True] 

slimcheck=FILE Motif file (PRESTO formats) or list of patterns to add to resfile 
output 

[] 

 Output Options II: Output Formats  

teiresias=T/F Replace TEIRESIAS only, making *.out and *.mask.fas files [False] 

slimdisc=T/F Output in SLiMDisc format instead of SLiMFinder format (*.rank & 
*.dat.rank) 

[False] 

extras=T/F Whether to generate additional output files (alignments etc.) [True] 

targz=T/F Whether to tar and zip dataset result files (UNIX only) [False] 

savespace=X Delete "unneccessary" files following run (best used with targz):  
- 0 = Delete no files 
- 1 = Delete all bar *.upc and *.pickle files 
- 2 = Delete all dataset-specific files including *.upc and *.pickle 
(not *.tar.gz) 

[0] 

 Output Options III: Additional Motif Filtering  

topranks=X Will only output top X motifs meeting probcut [0] 

minic=X Minimum information content for returned motifs (See 
 3.3.3Information content) 

[2.1] 

slimcalc=LIST List of additional statistics to calculate for occurrences, out of 
Cons,SA,Hyd,Fold,IUP,Chg,Comp. See the documentation (help) 
for rje_slimcalc.py and  7Additional Statistics and Filtering for more 
details on options for additional SLiM statistic calculations and 
filtering. 

[] 

 Additional Functions  

motifseq=LIST Outputs fasta files for a list of X:Y, where X is the pattern and Y is 
the output file 

[] 

slimbuild=T/F Whether to build motifs with SLiMBuild. (For combination with 
motifseq only.) 

[True] 

randomise=T/F Randomise UPC within batch files and output new datasets [False] 

randir=PATH Output path for creation of randomised datasets [Random/] 

randbase=X Base for random dataset name [rand] 
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2.5. Rerunning SLiMFinder (and Pickling) 

The longest part of SLiMFinder is generally the SLiMBuild portion, which assembles the actual motifs. 

In order to accelerate future analyses, SLiMFinder (a) outputs a *.*.pickle file following SLiMBuild if 

none exists, or (b) reads in an existing *.*.pickle file in place of regenerating motifs using SLiMBuild. 
(This uses Python’s “pickle” method for saving a mid-run version of the program and all its objects.) 
This file could be in one of the paths indicated by the resdir=PATH or buildpath=PATH options. (If 

created in (a), it will always be output into the resdir=PATH directory.) Unless running in Windows 

(set win32=T), the pickle will be compressed with gzip. 

2.5.1. Pickle naming conventions 

Things obviously get complicated because of the wide array of options when building motifs. Each 
pickle is therefore named with the most important parameters used during SLiMBuild. 

lXwXoXaX 

lX : slimlen=X 

wX : maxwild=X 

oX : adjusted ambocc=X value 

aX : a code for which ambiguity is used: 0=None, 1=equiv, 2=wildvar, 3=both, 4=both+combined 

NB. It is assumed that the input dataset itself does not change! If you change the dataset but keep the 
same name, things may go very badly wrong! The sequences from the original run, including any 
masking of the data, will be re-loaded from the pickle. (If i>=0 then the option to replace the pickle 
with the new settings will be given.) 

2.5.2. Masked dataset pickles 

Because masking in itself can be quite lengthy for large datasets, it is possible to switch on additional 
masking pickles that are saved for input data, independent of the main pickling, using 
maskpickle=T. By default these are named after the dataset and masking options but the masking 

options can be replaced with user-defined text to identify specific masking settings using 
masktext=X.     

2.6. Secondary SLiMFinder Functions 

In addition to the main SLiM discover function of SLiMFinder, a couple of additional tools are 
included to help analyses.  

2.6.1. Simple Identification of Sequences containing Motifs 

The motifseq=LIST option will output fasta files for a list of X:Y, where X is a motif pattern and Y 

is the output file. Each motif must be given a separate output file. (You can always concatenate these 
afterwards.) 

E.g. motifseq=P..P:sh3.fas,RGD:rgd.fas will output all PxxP-containing sequences to a file 

called sh3.fas and all RGD-containing sequences to a file called rgd.fas. 

By default, SLiMFinder will also run as normal. To stop this, use the slimbuild=F option. This is not 

compatible with batch running. 

2.6.2. Randomising Batch Datasets 

SLiMFinder incorporates a simple algorithm for randomly combining UP clusters from input datasets 
into a new set of fasta files with the same numbers of UPC. This is switched on with the randomise=T 

option. New datasets will be output into the directory determined by randir=PATH [Random/ by 

default] and be given a name in the form: 

RAND_X_Y-Z, where RAND is the file prefix given by randbase=X [rand by default], X is the 

number of the dataset, Y is the number of sequences and Z is the number of UPC. 

Note. When making these random datasets, SLiMFinder does not check whether multiple UPCs 
contain identical and/or related sequences. If the input datasets contain overlapping/related UPCs 
then it is possible that some actual random datasets will have fewer sequences and/or UPCs than 
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listed. This can be identified in the main SLiMFinder output when the SeqNum and/or UP values do 
not match the dataset name. 
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3. SLiMFinder Methods & Definitions 

 

This section describes the SLiMFinder methods in more detail. Please also see the SLiMFinder paper 
(Edwards et al. 2007). 

3.1. SLiMFinder Program Overview 

A schematic of SLiMFinder with the main options is given in Figure  3.1. The SLiMBuild and 
SLiMChance algorithms are explored in more detail in Chapters 4 and 5, while the output is explained 
in Chapter 6. 
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targz=T/F [F]
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Figure  3.1. SLiMFinder Overview.  

Outline of main SLiMFinder program workflow. The main commandline options are shown in blue 
linked to the sections they influence. See  2.4 &  7.5 for a more complete list. Details are given in the 
text. 

 
The main SLiMFinder workflow is as follows: 

1. SLiMFinder uses the RJE_SEQ (Edwards 2006) module to read in the input dataset. This may 
therefore be in any format recognised by RJE_SEQ, although UniProt or Fasta format are 
recommended. If no sequence file is given with the seqin=FILE command, then SLiMFinder will 

default to “batch” mode and run on all files specified with the batch=LIST command. By default, 

this equates to all UniProt (*.dat) and Fasta (*.fas) files in the run directory. 

2. If present, the UPCs will be read in from a file (*.upc). Otherwise, the (unmasked) input 

sequences are saved as *.slimdb in fasta format and an all-by-all BLAST search performed to 

define Unrelated Protein Clusters (UPCs) (see  3.2). If there are insufficient UPCs for SLiMFinder 
to meet user parameters, it will exit.  
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3. If the appropriate *.pickle file present, this will be loaded. Otherwise, the input data will be 
masked according to user choices, masking out predicted ordered regions, selected UniProt 

features, low complexity regions and/or N-terminal methionines (see  4.1). 

4. If the appropriate *.pickle file was not present, the main SLiMBuild algorithm is executed. First, 

all iXj dimers are found using the maxwild=X parameter setting ( 4.2.1). These dimers are then 

reduced to those that meet the support requirement set by the ambocc=X option. iXj dimers are 
then assembled into longer SLiMs (upto the length defined by slimlen=X) by matching iXj and 

jYk dimers with the appropriate occurrences ( 4.2.2). Where preamb=T, motif ambiguity is 

introduced during this phase ( 4.2.3). 

5. If teiresias=T then SLiMFinder will run in TEIRESIAS Mode, outputting a file of masked 

sequences and a TEIRESIAS-format file of shared motifs. 

6. Amino acid frequencies ( 5.1) are then calculated on the dataset for each sequence and each UPC. 
This may use masked sequences (maskfreq=T) or unmasked (maskfreq=F) sequences, or an 

external source of frequency information (aafreq=FILE). Frequencies may be UPC-specific 

(smearfreq=F), or averaged over the whole dataset (smearfreq=T). 

7. The SLiMChance algorithm estimates motif significance. The probability of each motif is then 

calculated using its support and amino acid frequencies ( 5.2). Probabilities are then corrected for 
the size of motif space searched and the probcut=X cut-off to identify the subset of “Significant” 

motifs. 

8. Lastly, significant motifs are ranked and output (Chapter 6). 

3.2. Unrelated Protein Clusters (UPC) 

SLiMFinder is concerned in finding motif occurrences in “Unrelated Protein Clusters” (UPCs). Each 
UPC is a group of proteins that are not related to any proteins in the dataset outside of their own UPC 

(Figure  3.2). BLAST (Altschul et al. 1990) is first used to identify which proteins are related to which 
other proteins. Each protein is put in a cluster with all the other proteins which are hit during a 
BLAST search. If the BLAST results for any of these proteins include proteins not hit by the original 
sequence, then these too are added to the UPC. This is repeated until none of the proteins within the 
UPC hit, or are hit by, proteins in another UPC.  

 

 

BLAST Homology (no scale)
 

Figure  3.2. Generation of UPC from BLAST results.  

An all-by-all BLAST is performed, which identifies all protein pairs with detectable homology. These 
are then clustered such that no protein in a cluster has BLAST homology with a protein in another 
cluster, while every protein in a cluster has homology with at least one other protein in its cluster. 
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Within each UPC a modification of Primm’s algorithm (Davey et al. 2006) is used to determine the 
“Minimum Spanning Tree” (MST) adjusted size of that UPC in terms of sequences. This MST value 
varies from 1 to N, where N is the number of proteins in the UPC. If all proteins are 100% identical, 
the MST is 1. If all proteins were 100% different (never true for a UPC!) the MST is N (see SLiMDisc 
(Davey et al. 2006) for more details). This MST value is then converted into an MST correction M by 
dividing the MST value by N. 

SLiMFinder uses the largest GABLAM ordered identity (Edwards & Davey 2006) to generate the 
distance matrix for MST calculations. 

3.3. SLiM Definitions 

This covers the basic definitions needed to understand this manual. The term “motif” can be used in a 
number of different contexts with different meanings. In this manual, I use motif to mean a short, 
linear motif (SLiM) in a protein. In biology, SLiMs are functional microdomains with three main 
properties: 

Short – generally less than 10aa long with five or less defined residues. 

Linear – comprised of adjacent amino acids in a protein’s primary sequence. While three-
dimensional conformation may be important for function, it is not necessary for definition. 

Motifs – there are some defined sequence patterns that are necessary for function and will therefore 
recur in the relevant proteins, allowing identification. 

In this manual, “SLiM” may describe a true functional motif with these properties, or simply a SLiM-
like sequence pattern that may be functional or may simply be a chance occurrence. 

3.3.1. SLiM Anatomy 

The basic anatomy of a SLiM is shown in Figure  3.3.  

The number of positions for a SLiM, L is the number of defined (i.e. non-wildcard) positions (upto 
slimlen=X). The total length of a SLiM is the number of defined (i.e. non-wildcard) positions plus 

the number of wildcard positions: 
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wXL , where Xw is the number of wildcard positions at position w. 
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Figure  3.3. Anatomy of a SLiM.  

Definitions of different properties of SLiM have been marked on the example ELM, LIG_CYCLIN_1 
(Puntervoll et al. 2003). This motif has three defined positions (one fixed and two degenerate) and two 
wildcard spacers (one fixed, one flexible-length) for a total length of 4-5aa. 
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3.3.2. SLiMs and SLiMBuild Dimers 

SLiMs are defined in terms of the number of non-wildcard positions and the number of wildcards 
between each pair of positions. Each SLiM is therefore made up of a number of overlapping dimers i-
X-j where i and j are non-wildcard positions and X is the number of wildcard characters separating 
them. E.g. the well-known RGD motif is considered by SLiMFinder to be R-0-G-0-D, which in turn is 
comprised of the SLiMBuild Dimers R-0-G and G-0-D. 

3.3.3. Information Content (IC) 

Information content is calculated for each motif based on a uniform distribution of amino acids and 
re-scaled to give a value of 1.0 per fixed position and 0.0 for a wildcard. Ambiguous positions are 
given a value between 0.0 and 1.0: 

ICi = –logN(fa)  

where ICi is the information content for position i, fa is the summed frequency for the amino acids (or 
nucleotides) at position i and N is number of amino acids (or nucleotides) in the alphabet, i.e. N=4 for 
DNA and N=20 for proteins. This is a modification of Shannon's Information Content (Shannon 1997) 
such that a wildcard receives 0.0 and a fixed position scores 1.0 when a uniform frequency 
distribution is used. Ambiguous positions score between 0.0 and 1.0. When non-uniform frequencies 
are used, fixed rare amino acids (fa < 1/N) will score above 1.0, while fixed common amino acids (fa > 
1/N) will score less than 1.0. Termini always get an ICi score of 1.0. For each comparison, the lower ICi 
value is where ICi is the information content for position i and fa is the number of possible amino acids 
at position i. The information content for the motif is simply this score summed over all positions. 

3.3.4. Motif Occurrences and Support 

An occurrence of a motif in SLiMFinder is a single “instance” of that motif in a given protein and is 
identified using the sequence identifier and starting position of the motif. Motifs may have multiple 
occurrences with a UPC or even within a single sequence. 

The support of a motif in SLiMFinder is defined as the number of sequences that motif occurs in. Note 
that support in this context does not make any distinction between motifs with multiple occurrences 
in the same UPC. For this reason, SLiMFinder will output the number of occurrences, the support, 
and the normalised UP support, which is the number of unrelated proteins (UPCs) in which the motif 
is found. The uncorrected support is of interest for identifying the dataset coverage for each motif, 

while the corrected support is important for determining its significance (see Chapter  5). 
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4. SLiMBuild Motif Construction 

 

4.1. Input Masking 

SLiMFinder masks input by replacing regions and residues with Xs. Note that SLiMFinder masking is 
performed after UPC definition and therefore masking will not affect the UP relationships between 
sequences. If you want to affect UP definition, then sequences must be masked manually before 

running SLiMFinder. SLiMFinder includes several masking options (below). In addition, the rje_seq 

module provides additional input data filters (see RJE_SEQ Manual for details). If UniProt files are 

not available, the unifake utility can be useful in generating files to maximise the potential of masking 
(See website). 

4.1.1. Disorder masking 

SLiMs tend to occur in disordered regions of proteins. SLiMFinder makes use of IUPRED (Dosztanyi 
et al. 2005) and/or FoldIndex (Prilusky et al. 2005) to predict regions of disorder. IUPRED must be 
installed locally, while FoldIndex can be run over the web. Residues predicted to be “intrinsically 
ordered” are masked out. The IUPRED -off threshold can be altered using iucut=X (0.2 by default). 

To use FoldIndex instead of IUPRED, use the disorder=foldindex command. You must have an 

active internet connection.  

Because disorder masking utilises a per-residue score, there are often single residues that are just 
above/below the threshold in a region that is otherwise (dis)ordered. Regions can therefore be 
smoothed out using the minregion=X option, which stipulates the minimum number of consecutive 

residues that must have the same disorder state. (Dis)ordered regions smaller than this are 
assimilated into the neighbouring regions, starting with the smallest (1aa regions) and working up 
until all regions are large enough; within each region size, the sequence is traversed from N-terminal 
to C-terminal.  

4.1.2. UniProt Features 

If the input dataset is in UniProt format then features can be masked out. Any feature types given by 
the imask=LIST feature will be “inclusively masked”, i.e. any sequence not part of one of these 

features will be masked out. Feature types given by ftmask=LIST (EM, DOMAIN, and TRANSMEM 
by default) will then be masked out. 

4.1.3. Low Complexity Masking 

SLiMFinder uses a simple complexity filter. If any amino acid occur N+ times in a stretch of L amino 
acids (compmask=N,L) then the central (N-2) occurrences of that amino acid are replaced with Xs. 

E.g. PFPPIPLP would become PFXXIXLP. 

4.1.4. N-terminal Methionines 

If using terminal motif searching (termini=T) then there is a high risk of artefactually returned ^M* 

motifs due to the high occurrence of Met at position 1. The maskm=T option masks any position 1 Ms 

to remove this artefact. (Of course, real ^M* motifs may be missed as a result.) 

4.1.5. Masking by Case 

SLiMFinder can also mask out Upper or Lower case sequences as set by the usecase=T and 

casemask=X option, where X is Upper or Lower. The case of the sequences can be changed by the 

additional option case=LIST, where LIST is the positions to switch case, starting with first lower 

case (e.g. case=20,-20 will have twenty amino acids of Upper case at each end of each sequence). 

Example. To search only in the C-terminal 30aa of each sequence, use:  

python slimfinder.py casemask=Lower usecase=T case=0,-30 

NB. In this case, it is recommended to change the way amino acid frequencies are used by adding the 

options maskfreq=T smearfreq=T (see  5.1). This will use the amino acid frequencies from just the 
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unmasked portions of the sequences. Because these are quite short, they are prone to random 
fluctuations, so the smearfreq option will average the frequencies over the sequences. 

4.1.6. Relative Conservation Masking 

Sites of functional importance are likely to exhibit as much, or more, conservation than those around 
them. SLiMFinder incorporates a masking strategy that removes residues that violate this assumption 
by masking out any positions that are less conserved than flanking regions as assessed using a score 
based on Shannon’s entropy. A conservation score is first calculated for each position, i, of each 

sequence using the optional multiple sequence alignment (MSA) input of orthologues (see  2.2.5 and 

 7.3): 

iaai gffc ).)(log1( 20∑−=  

Where fa is the frequency of each (non-X) amino acid a in the MSA column i and gi is the proportion 
of sequences in i that are not gaps. This will be 1.0 for a fixed (100% conserved) residue and tend 
towards 0.0 for a totally variable residue in a large alignment (i.e. all 20 aa have a frequency of 1/20). 
The “gap penalty” reduces the score for columns with indels and includes Xs as non-gapped residues, 
even though these are not included in the entropy calculation. If all the non-gap sequences in a 
column are Xs, the amino acid frequencies from the whole alignment are used to calculate the entropy 
for that position. 

This is then converted into a relative conservation score, ri, which is based on the mean conservation 
score across a window flanking the residue, normalised by the standard deviation: 
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Where cw and SDw are the mean and standard deviation respectively of the ci scores across a window 
of 30aa either side of position i. The resultant score, ri will be positive for residues that are more 
conserved than their flanking residues and negative for those less conserved (mean 0.0, standard 
deviation 1.0). Any residues that have a different disorder state from residue i are excluded from the 
calculation. (Ordered regions generally show a higher level of conservation than disordered regions.) 

Any residues with ri < 0.0 are masked out. (If there is no MSA for a protein, all residues will have a 
score of 0.0 and no residues will be masked.) 

4.1.7. Masking pre-defined motifs 

Certain commonly recurring motifs (e.g. [KR][KR] or RSRS) can dominate results from large-scale 
analyses. These motifs can now be masked from the input dataset using motifmask=X, where X is a 

file containing motifs or simply a list of motifs (see  2.2.2). Wildcard positions in such motif 
occurrences will not be masked out. (e.g. PxxP would only mask the two prolines.) 

4.2. SLiM Construction 

SLiMBuild uses four basic sets of parameters for generating motifs from the dataset: 

w, the maximum number of wildcard positions allowed between any adjacent pair of defined 
positions. 

The maximum number of defined positions. (Sometimes referred to as the “length” of the motif, 
although the “true length” of a SLiM would include both defined and wildcard positions.) 

s, the minimum support for the motif, i.e. the number of unrelated proteins that motif occurs in.  

Ambiguity options, including an equivalency file of allowed ambiguities. 

An optional minimum variant support, v, used in extending ambiguity.  

Motifs are constructed by first identifying all possible “i-x-j dimers”, which consist of two amino acids i 

and j separated by x wildcards, up to the maximum allowed value, w (Figure  4.1(a)). Motifs are then 

extended by joining appropriate dimers together (Figure  4.1(b)). Finally, SLiMBuild incorporates 

ambiguity into the motifs (Figure  4.2). 
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Figure  4.1. SLiMBuild construction of motifs.  

(a) Dimer construction. For each position in a sequence, each possible wildcard length x is used to find 
possible “i-x-j” dimers. Dimers containing masked (“X”) residues are ignored (greyed dimers). Note that 
the n-terminal “^” marker is treated as any other amino acid. (b) Motif extension. Longer SLiMs are 
constructed during the SLiMBuild process by matching the occurrences of shorter SLiMs with the 
relevant i-x-j dimers. At each stage, only SLiMs with sufficient unrelated protein support are retained, 
making the algorithm very efficient. 
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Figure  4.2. SLiMBuild Ambiguity.  

(a) Wildcard ambiguity. Ambiguity is added in a multi-stage process. First, the motif is broken up into 
its component parts, consisting of alternate defined and wildcard positions. These are then replaced 
by the appropriate equivalency group, which in the case of wildcards is the full range of wildcard 
lengths from 0 upto the maximum length allowed. These equivalencies are then expanded to all 
possible variants. Variants with insufficient support (grey) are ignored and any variants (red) not 
increasing the UPC support of the motif are dropped. The remaining variants are ranked (see text) and 
the best variant combined with the original motif (blue). The remaining variants are re-assessed for 
increasing UPC support and any failing to do so are again removed. If any remain, the ranking and 
combining cycle repeats. If not, the finished degenerate motif is returned. (b) Amino acid ambiguities. 
These are handled in the same way as wildcard ambiguities, except that this time equivalencies are 
defined by the given equivalency list. If a given amino acid belongs to multiple equivalency groups, 
such as serine ([AGS] and [ST]) then all possible combinations of these equivalency groups (four in this 
case) are considered separately, thus multiple ambiguous SLiMs can potentially be produced. 
(Expansion of these combinations has been truncated in the figure.) 
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4.2.1. SLiMBuild dimer construction 

Dimers are constructed simply by taking each position i of each protein in turn to define the first 
amino acid, ai. Each wildcard length x from 0 to W, where W is the maximum wildcard length is then 
taken in turn and used to define the second amino acid in the dimer, aj where j = i + x. If ai or aj are 
masked (an ‘X’) then that dimer is rejected, else the dimer is added to the stored list, along with 
information on the protein and position i of its occurrence (Figure  4.1(a)). Symbols representing N- 
and C-termini (^ and $) are added to each sequence prior to dimer construction and thereon 
considered as additional amino acids. 

After all dimers have been found in all sequences, any with a support below the minimum support 
threshold are removed. (For a motif to exceed a given support, each of its component dimers must 
also exceed that support.) This greatly increases the efficiency of the algorithm. The efficiency is 
further increased by establishing the evolutionary relationships first, thus screening out all those 
motifs that only occur multiple times because of shared ancestry.   

4.2.2. SLiMBuild motif extension 

Motifs are extended by concatenating i-x-j dimers (Figure  4.1(b)). For each dimer aix1aj all azx2ak 
dimers are examined, where az = aj (k = z + x2, az and ak are amino acids at positions z and k). Where 
the two dimers have occurrences in the same protein and z = j, the two dimers are compiled to make a 
single aix1ajx2ak trimer. If this trimer occurs in s or more unrelated sequences, it is retained and 
extended in the same way to make 4mers. This continues until the maximum motif length is reached 
(length 5 by default) or until there are no more motifs with the desired support to extend. 

4.2.3. SLiMBuild ambiguity 

SLiMBuild considers two types of ambiguity: amino acid degeneracy at a given position, and flexible 
length wildcard ‘‘gaps’’. A similar logic is applied in considering both these forms of ambiguity by 
carefully combining appropriate motifs generated during SLiMBuild extension. Each fixed motif is 
considered in turn as a seed for adding ambiguity in terms of degenerate non-wildcard positions 

and/or flexible wildcard lengths (Figure  4.2). Ambiguity is considered in three phases: wildcards only, 
amino acids only and combined wildcard and amino acid degeneracy. (Combined ambiguity can be 
computationally intensive and is switched off by default.) 

In each case, the motif being considered is broken down into individual elements, consisting of 
alternate amino acids and/or wildcard lengths. Each element is then replaced by its ‘‘equivalencies’’. 
For wildcards, this consists of single wildcard equivalency ‘‘01..W’’, where W is the maximum wildcard 
length allowed; e.g. for the default maximum wildcard length of 2, the wildcard equivalencies are 0, 1 
and 2, and a variable length gap of 1 or 2 is represented by the equivalency [12]. (Figure 3A). For 
amino acid positions, SLiMFinder makes use of an ‘‘Equivalency list’’ for ambiguity in a similar way to 
TEIRESIAS, although the actual application of this file is quite different. This equivalency list contains 
a number of amino acid groups that may be substituted in degenerate positions; e.g. KR would allow 
for [KR] degeneracy, while FYW, would facilitate [FY], [YW], [FW] and [FYW]. A single amino acid 
can have multiple equivalency groups, which are analysed separately. E.g. AGS,ST would permit 
serine [AS], [GS], [AGS] and [ST], but not [AGST]. Where multiple equivalency groups exist for one or 
more amino acids in a SLiM, all possible combinations of equivalency group are considered (Figure 

 4.2(b)). 

The idea of ambiguity is to try to increase the coverage within a dataset for a given motif. This is 
achieved by adding ambiguity that increases support (no of unrelated proteins) for the motif. Thus, 
returned motifs need to have been initially seeded by a non-ambiguous motif (with lower support) 
before it is extended to consider ambiguity. For each ambiguity combination, all possible variants 
(excluding the original motif) are then considered. E.g. [KR]-0-[ST]-1-P yields variant motifs K0S1P, 
R0S1P, K0T1P and R0T1P, the second of which is ignored as it is the original motif. Any variants that 
do not meet the minimum support requirement are also rejected. Remaining variants are then ranked 
according to the following criteria: 

1. Number of “new” UP clusters. (The number of UPCs in which the variant is found but the original 
motif is not.) If the variant provides no new UPCs then it is rejected. 

2. Total (UPC) support for the variant, if tied for 1. 

3. Total number of occurrences for the variant (in different sequences, regardless of homology 
relationships), if tied for 1 & 2.  
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If tied for 1-3, the variant that is most unlikely, given the amino acid frequencies of the whole dataset, 
is ranked higher. 

The top-ranked variant is retained and its UPCs added to those of the original motif. The ranking is 
then repeated using this new UP support, i.e. further variants are not added if their “extra” support 
has already been provided by previous variants. This continues until all variants have been retained, 

or rejected (Figure  4.2). Finally, retained variants are combined to make an ambiguous motif. E.g. if 
R0T1P had been retained then it would be combined with the original R0S1P SLiM to make R0[ST]1P 
(R[ST].P). In the case of flexible wildcards, the minimum and maximum length variants retained are 
used. i.e. R0S1P+R2S1P = R[02]S1P (R.{0,2}S.P). Note that because different equivalency 
combinations are examined separately, one SLiM may spawn several ambiguous motifs (e.g. R [ST].P 
and R [AGS].P) but only one ambiguity will be produced per equivalency group (i.e. R[AS].P and 
R[AGS].P will not both be produced using a single AGS equivalency group). 

To increase the flexibility of ambiguity, SLiMFinder has an option for reducing the minimum support 
needed for each variant to be retained by SLiMBuild. The final ambiguous motif must, however, meet 
the basic support criteria. i.e. The user could specify a minimum basic support s of three but a 
minimum variant support v of two. Ambiguous motifs could therefore be constructed from variants 
that each occurred in only two unrelated proteins, though the final motif produced (as well as any 
fixed motifs being kept) would occur in at least three unrelated proteins. 

4.2.4. Final SLiM Support 

After ambiguity has been added (if any), SLiMs are filtered to only retain those with enough support 
to satisfy the minocc=X setting. If the query=X option is used, only those motifs in the query 

sequence are retained. 

4.3. SLiMBuild versus TEIRESIAS 

Ignoring the extra utilities of the SLiMChance scoring metrics and additional outputs, the SLiMBuild 
approach has a number of advantages for SLiM discovery over TEIRESIAS (Rigoutsos & Floratos 
1998) and would therefore make a worthwhile replacement of TEIRESIAS for other SLiM discovery 
methods, such as LMD (Neduva et al. 2005) or SLiMDisc (Davey et al. 2006). These are explored in 

Table  4.1. 

 

Table  4.1. Major advantages of SLiMFinder over TEIRESIAS for SLiM Discovery. 

SLiMFinder TEIRESIAS 

Explicitly looks for shared motifs in unrelated proteins: 
the more relationships in a dataset, the less motifs 
returned (and the shorter the run time). 

Looks for all shared motifs: the more relationships in 
the dataset, the more patterns returned (and the longer 
the run time). 

Support is in terms of unrelated proteins – reduced 
post-filtering. 

Support is in terms of any occurrences – many 
irrelevant motifs returned that must be filtered. 

Building method allows good estimation of “motif 
space” searched, permitting strong statistical treatment 
of results. 

Search space covered by parameter settings is not 
clear, hampering statistical treatment of results. (Crude 
restrictions will miss some motifs of interest and/or 
return too many (related) motifs.) 

Ambiguity is added only when it will increase the 
number of unrelated proteins for a motif.  

It is not very clear which ambiguous motifs will be 
returned. 

Flexible-length wildcards are allowed. No flexible-length wildcards. 

Advanced filtering and masking options allow the 
search-space to be reduced. 

No inherent filtering/masking options. Must all be post-
processed. 

A probabilistic method (based on binomial theory) 
calculates expectations and estimates significance of 
results. 

Results are returned in a jumble and without any 
scoring metric. 
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5. SLiMChance Motif Probability Methods 

 

5.1. Amino Acid Frequencies 

By default, amino acid frequencies are calculated from the dataset, individually for each sequence. 
These frequencies can be over-ridden using the aafreq=FILE command, where FILE is either a fasta 

file (this can be the input file to even aa frequencies across sequences) or an aa frequency file (see 
PRESTO for details). If maskfreq=T then the AA frequencies used will not include any masked 

residues. This can lead to amino acid bias problems if the unmasked sequences are quite short, which 
may in turn lead to artefactually poor significance values for returned motifs. This in turn can be 
rectified using the smearfreq=T option, which will calculate AA frequencies for each UPC and then 

use mean frequencies across all UPCs for the SLiMChance calculations. Suggested use of these options 

is listed in Table  5.1. 

The default uses amino acid frequencies for the whole dataset before masking. This can return 
significant values as artefacts if the masking itself has a compositional bias. One way to test for this is 
to run SLiMFinder with both settings and compare the results. In each case, only known one-letter 
amino acids (i.e. no masked residues) contribute to the total. 

 

Table  5.1. Suggested use of Amino Acid Frequency options. 

Scenario Suggested settings 

Dataset consists of full-length proteins, without masking. maskfreq=F smearfreq=F 

Dataset is masked but unmasked regions are still long. maskfreq=T smearfreq=F 

Dataset is masked and unmasked regions may be short. Masking is 
independent of AA composition. 

maskfreq=F smearfreq=T 

Dataset is masked and unmasked regions may be short. Masking 
itself may have a compositional bias, such as masking ordered 
regions or UniProt domain features. 

maskfreq=T smearfreq=T 

Dataset consists of a compositionally biased subset of the “true 
search space”, such as a set of phage display peptides. 

aafreq=FILE 

 

5.2. SLiMChance motif probability estimation 

SLiMBuild returns the list of motifs that occur in the desired number of unrelated sequences. 
However, because only a few amino acids define each motif, there is a reasonably high chance of a 
motif recurring in unrelated sequences purely by chance. This is further complicated by the fact that a 
large number motifs are being considered for any given dataset and each of these motifs has a chance 
of recurring. The SLiMChance algorithm therefore consists of two layers (described in detail below): 

SLiMChance calculates the absolute probability for each motif returned by SLiMBuild. If a motif 
occurs in k unrelated proteins, the absolute probability is the probability of exactly that motif 
occurring in k+ UPCs in the dataset. This calculation is based on the amino acid composition of the 
dataset.  

SLiMChance adjusts the absolute probabilities in an attempt to account for the fact that multiple 
motifs are being considered and these motifs are only being considered (i.e. only being returned by 
SLiMBuild) because they occur a certain number of times in the dataset. This calculates an estimate of 
how many motifs with a given absolute probability or smaller should be returned by the dataset, or the 
probability of seeing that motif or another one like it. This is based on the Bonferroni correction for 
multiple testing. 
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5.2.1. SLiMChance probabilities per UPC 

SLiMChance first calculates the probability of seeing each motif in each UPC, given its amino acid 
composition and i-x-j dimer frequencies. This probability is calculated using the binomial distribution 
and the expectation of the motif occurring at each site in the UPC, which is a simple calculation based 
on the frequency of each amino acid (fa), and the total number of positions that a motif can occur (Nm). 
By default, amino acid frequencies are calculated from the dataset, individually for each UPC, before 
any masking takes place. Additional options allow amino acid frequencies to be adjusted for masking, 
averaged over all UPCs, or read from a file. 

For each defined position in a motif with d alternative (degenerate) amino acids, the probability of 
occurrence at any residue in the dataset (pi) is the sum of the frequencies for the possible amino acids 
at that position: 
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The probability pm of the whole motif starting at any residue is therefore the product of pi over all L 
positions in a motif: 
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(Wildcard positions do not contribute to this value, as the probability of matching a wildcard is 1.0.).  

This defines the probability for each “Bernoulli trial” in the binomial distribution. What remains is to 
define appropriately the number of trials for the motif in the UPC. There are two features of the UPC 
that complicate estimation (for the probability calculation) of the number of positions that a motif 
might arise at: firstly, some but not all regions of the UPC proteins are related by evolution, and 
secondly, the particular pattern of masking may alter the number of positions available for motifs with 
a particular distribution of non-wildcard positions.  

Because the proteins within a UPC are evolutionarily related, they do not contribute to the motif space 
searched by SLiMFinder in the same way as unrelated proteins, for which the motifs found would be 
independent. However, unless all the sequences are 100% identical, there are still more independent 
positions at which a given motif could occur than in any of the individual sequences within the UPC. 
The UPC must therefore be rescaled to represent its true contribution to the dataset. This is performed 
using the “Minimum Spanning Tree” (MST) correction used by SLiMDisc (Davey et al. 2006) to 
correct for evolutionary relationships. This MST value varies from 1 to N, where N is the number of 
proteins in the UPC. If all proteins are 100% identical the MST value is equal to 1 (and the UPC is 
exactly equivalent to a single sequence). As the proteins become more dissimilar, MST tends towards 
N (see SLiMDisc (Davey et al. 2006) for more details). This is converted into an “MST correction”, M, 
for the UPC by dividing the MST value by N. The total size of the UPC is therefore adjusted by 
multiplying Naa (the total number of unmasked residues in the UPC) by M. (This is equivalent to the 
mean number of amino acids per sequence in the UPC, multiplied by the MST-corrected size of the 
UPC.) SLiMFinder uses the largest GABLAM (Davey et al. 2006) ordered percentage identity between 
each pair of sequences to generate the distance matrix for MST calculations. 

The distribution of masking may influence the potential for a particular type of motif (e.g. L..LY..L) to 
occur. For a dimer motif with a given wildcard length x, SLiMChance directly observes the frequency 
of positions in the dataset that could accommodate a dimer motif of that wildcard length. Then, for 
longer motifs, it estimates the frequency of potential sites as the product of the fraction of dimer sites 
for all the dimers that constitute the motif.  This has the numerical advantage that the frequencies of 
dimer types are previously available from the SLiMBuild computation.  The number of trials is then 
estimated as the possible number of positions at which the motif could start (Nm). Nm is calculated 
empirically from the dataset. During dimer generation, (Dx)  the  fraction of unmasked residues that 
start with a dimer of that particular wildcard-length x is calculated as a proportion of non-masked 
positions in the UPC. 

aa

ixj

x
N

N
D =  
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Where Nixj is the count of such dimers in the UPC for which neither i nor j are masked, and Naa is the 
total number of unmasked residues in the UPC. 

Nm, the number of positions at which a motif may potentially occur is then calculated from the product 
of the motif’s component dimer frequencies and the MST-adjusted number of unmasked residues in 
the UPC: 

∏
−

=

=
1

1

L

w

xwaam DMNN  

where M is the MST correction for that UPC, L is the length (no. of positions) of the motif and Dxw
 is 

the dimer frequency for that wildcard length x at wildcard position w. (For flexible-length wildcards, 
this is the mean dimer frequency of the length variants at w.) 

If there are wildcard length variants, each length variant has a chance of occurring and so this 
effectively increases the number of possible motif positions via a simple multiplication, where xj is 
number of wildcard variants at wildcard position j: 
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It could be argued that this multiplier should apply to the probability of the motif at each position, 
rather than the number of motif positions. (In reality, each motif “position” is a starting residue. 
Obviously, there cannot be more starting residues than the length of the sequence, whereas this 
multiplication implies that there can be.) The reason for applying the correction to Nm, however, is that 
this value has no upper bound for the binomial calculation. The probability pm, in contrast, must be ≤ 
1.0, whereas the multiplier for numerous variable-length wildcards could cause it to exceed 1.0. 

The probability of 1+ occurrences of the motif in the UPC is calculated using the binomial: 
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5.2.2. SLiMChance probabilities per dataset 

The individual p1+ values are then used to calculate the motif probability for the entire dataset, p, 
where NU is the number of UPCs in the dataset and KU is the number of UPC containing the motif. 
Again, this is calculated using the binomial, where pu is the mean p1+ value for each UPC: 
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In addition, the expected number of UP occurrences is calculated, which is simply the sum of the p1+ 
values. 

5.2.3. SLiMChance significance values 

The probability calculated above is the estimated probability of seeing a given motif with its observed 
support (or greater) given the dataset. However, the calculations implicitly assume that the motif was 
defined before anything was known about the dataset. In reality, SLiMFinder is looking for all possible 
motifs and only actually returning those at the “top end of the distribution”, i.e. the over-represented 
motifs. In reality, each motif in the “motif space” searched has a chance of being stochastically over-
represented, so it is important to adjust for this and establish a significance value for each motif.  

The a priori probability of each motif in motif space being over-represented with a probability p is 
itself (perhaps obviously) p. Because of the wall that SLiMBuild generates motifs using a maximum 
wildcard spacer length, X, it is possible to calculate exactly the size of the motif space, BL, for each 
length of motif L: 
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The significance of a motif with occurrence probability p can therefore be calculated using the 
binomial distribution as the probability of getting one or more successes given BL trials of probability 
p.  

LB
pSig )1(1 −−=  

This significance ranges from zero to one can be thought of as a true p-value. Because different lengths 
of motifs are not independent of each other, this significance value is calculated independently for 
each number of defined positions. The motif space calculation only calculates the number of fixed-
position motifs in the search space. Allowing ambiguities obviously increases the size of the search 
space and very relaxed ambiguous searches may need to use a more stringent p-value accordingly. 

5.3. Increasing significance with restricted searches 

The SLiMChance calculations assume that nothing is known about the motif a priori. Sometimes, 
however, additional information may be used to restrict the search space and thus increase the 
significance of returned motifs. The most common ways to do this are to specify query sequences, that 
must contain the motif, or to specify particular amino acids that the motif must contain. These are 
described below. 

5.3.1. Query sequences and focus groups 

Sometimes, you are only interested in motifs that occur in a particular sequence, or group of 
sequences. These can be given using the query=LIST option. In this case, only motifs that occur in at 

least one query sequence will be returned. Sometimes, this will increase the significance of the 
returned motifs. This significance adjustment is performed using, once again, the binomial 
distribution, where: 

� the number of trials n is the observed UP support of the motif 

� the probability of each trial p is the proportion of UPC that contain one of the query 

sequences 

� the number of successes k is 1 (the number of UPC that the motif must occur)  

The SLiMChance significance is multiplied by this probability. In small datasets, this will probably 
have little impact as significant motifs will tend to occur in all UPC, and the probability of seeing them 
in the query UPC is therefore 1.0. (If they occur in all UPC, they must occur in the query.) For larger 
datasets, the impact can be quite strong. If a motif occurs in 10 of 50 UPC, for example, the probability 
of it occurring in your query sequence is approx 18%, so the significance of the motif will be increased 
roughly five times. 

This can be extended further using the focus=FILE command (see  2.2.4). This allows you to set 

multiple query groups and specify how many of them must have the motif using focusocc=X. In this 

case the binomial is still used but the number of successes is determined by the focusocc setting. 

5.3.2. MustHave amino acid restrictions 

Sometimes you want to limit motifs returned to contain a given amino acid, e.g. tyrosine if looking for 
tyrosine phosphorylation motifs. This can be done quite simply by using the musthave=LIST 

command, where LIST a list of amino acids. Returned motifs must contain at least one of these amino 
acids. This increases the significance of motifs by reducing the motif space. 

If a is the number of amino acids in the MustHave list, the proportion of motifs that contain 1+ 
MustHave amino acids, H, for a motif of length L, is given by: 

LaH )1(1
20
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The size of motif space is then corrected to be BLH. 
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6. SLiMFinder Output Explained 

 

One of the features of SLiMFinder is the wealth of information available in the various outputs. For an 

initial inspection of the results, the basic results file (slimfinder.csv or resfile=FILE) should be the 
first port of call and contains all the results for all datasets and their summary statistics. For further 

evaluation of specific results, however, the additional outputs (see  2.3.3) can be extremely useful. 
These outputs are described in detail below and are saved in the directory specified by resdir=PATH 

(SLiMFinder/ by default). 

6.1. Main SLiMFinder Output (slimfinder.csv) 

The main output for SLiMFinder is a delimited file containing statistics on each dataset and any 
returned SLiMs. If no SLiMs are returned, a number of the columns will be blank but run- and 
dataset-specific information will still be output. The name of this file is set using the resfile=FILE 

option. If no file extension is given, “.csv” will be added. If the file extension is “.csv”, the file will be 

comma delimited. If it is “.txt” then it will be space delimited. All other extensions will result in a tab 

delimited file. (“.tdt” is recommended.) 

6.1.1. Overwriting, appending and backing up results 

By default, the main results file will be overwritten and a backup (optionally) saved as *.bak. If 
append=T then the file will be appended instead, allowing multiple runs to be examined together with 

ease. (Whatever this setting, multiple datasets within a single batch run will be output into a single 
file.) All dataset-specific files will be overwritten regardless of the append setting, so multiple runs 
should be redirected into different output directories using resdir=PATH. Previous results, namely 

the *.upc and *.*.pickle files can still be read in with the appropriate redirection by the 
buildpath=PATH option. (SLiMFinder will first look in the results directory and then in the build 

path. Both are set to SLiMFinder/ by default.) 

6.1.2. Main Output Fields 

The main output file consists of a number of dataset-specific and motif-specific fields. These are 

outlined in Table  6.1. 

6.2. Sequence Relationships (*.upc, *.self.blast, *.dis.txt, *.phydis.txt) 

Sequence relationships are very important for defining which motifs have sufficient support and for 
correctly adjusting the occurrence probabilities.  

6.2.1. UPC Definitions 

UPC definitions are made using an all-by-all BLAST, the results of which may be found in the 
*.self.blast file. UPCs are then saved in the *.upc file, which is a simple text file in the form: 

#LIG_14-3-3_1# 4 Seq; 3 UPC; 3.897 MST 

UP      N       MST     Seqs 

1       2       1.897   RAF1_HUMAN__P04049 M3K5_HUMAN__Q99683 

2       1       1.000   BAD_RAT__O35147 

3       1       1.000   MPIP3_HUMAN__P30307 

The first row contains the dataset name, the number of sequences, the number of UPC and the MST 
corrected size for the whole dataset. The closer the MST value is to 1, the more related the proteins 
are. A totally unrelated dataset will have an MST value equal to the number of sequences. The rest of 
the file is a simple table of the UPCs themselves: UP = UPC identifier; N = number of sequences in 
UPC; MST = corrected size of UPC; Seqs = List of sequences in that UPC. 

This file can be manually edited to modify the way that SLiMFinder uses the dataset. (If present, this 
file will be read in by SLiMFinder rather than regenerated, unless force=T.) 
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Table  6.1. Fields for main SLiMFinder Output. 

Field Type† Description Help‡ 

Dataset Dataset Dataset name. Generally input filename without its file extension. This will be 
the first part of any dataset-specific file names in the output directory. 

 2.2 

RunID Run Run identifier set by runid=X. The date & time is used if no ID is given. This 
allows the results of several runs to be compiled in a single results file and 
easily distinguished. 

 

Masking Run Summary of masking options: 'Dis' = disorder [dismask=T]; 'Comp' = 
complexity [compask=X,Y]; 'FT' = UniProt features [ftmask=LIST]; 'Inc' = 
inclusive features [imask=LIST]; 'Freq' = Mask AA frequencies 
[maskfreq=T]; 'None' = None. 
cntd over page… 

 4.1 

Build Run SLiMBuild settings. Also used for pickle naming. lXwXoXaX, where lX = 

SLiM length [slimlen=X]; wX = max. wildcard [maxwild=X]; oX = 

adjusted ambiguous occurrence [ambocc=X] value; aX = which ambiguity is 

used: 0=None, 1=equiv=LIST, 2=wildvar=T, 3=both, 
4=both+combamb=T. 

 2.5.1 

RunTime Dataset The time taken for the dataset to run (HH:MM:SS).  

SeqNum Dataset Number of sequences in dataset.  

UPNum Dataset Number of UPC in dataset.  3.2 

AANum Dataset Total number of unmasked AA in dataset.  4.1 

MotNum Dataset Number of motifs with minimum support requirement (i.e. would be output if 
no probability cut-off. 

 4 

Rank Motif Rank of returned SLiM. If a slimcheck=LIST motif, this will have a value of 
“*”. If no motifs of any kind are returned, the dataset will have a rank of 0 and 
no other Motif fields will have values. 

 

Pattern Motif Pattern of returned SLiM.  3.3.1  

IC Motif Information content.  3.3.3 

Occ Motif Total number of occurrences across all sequences.  3.3.4 

Support Motif Total number of sequences containing motif.  3.3.4 

UP Motif Total number of unrelated proteins containing motif.  3.2 

ExpUP Motif Expected number of unrelated proteins containing motif.  5.2 

Prob Motif The uncorrected probability of the motif. (The probability of k+ observations 
of a pre-defined motif.) 

 5.2 

Sig Motif The corrected p-value of the motif  5.2 

Cloud Motif Identifier of Motif Cloud to which the SLiM belongs. (Numbered starting at 1 
for the most significant motif.) 

 6.4 

CloudSeq Motif Number of sequences covered by that motif cloud.  6.4 

CloudUP Motif Number of unrelated protein clusters covered by motif cloud.  6.4 

†Field content either pertains to the specific Motif returned, the Dataset searched, or the Run settings 
that yielded those particular results. 
‡Section of manual containing more information. 

 

 

 

6.2.2. Distance Matrices 

In addition to this file, two distance matrices are output: a plain tab delimited file *.dis.tdt and a 

PHYLIP (Felsenstein 2005) format *.phydis.txt file. These files contain the pairwise GABLAM 
sequence identities. (For the PHYLIP file, sequence names may be replaced by the number of the 
sequence in the input file.) 
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6.3. Dataset rank files (*.rank) 

The *.rank file is similar to the output from SLiMDisc. This consists of a self-explanatory file header 
and a number of tab delimited fields from the main results output (See above). 

6.4. Motif Clouds (*.cloud.txt) 

Where significant motifs are returned, SLiMFinder will group them into Motif "Clouds" that consist of 
physically overlapping motifs (2+ non-wildcard positions are the same in the same sequence). This 
provides an easy indication of which motifs may actually be variants of a larger SLiM and should 
therefore be considered together. 

The *.cloud.txt file contains information about the Significant Motif Clouds. The top of this file 
contains a self-explanatory header listing numbers of sequences, UPCs, SLiMs and clouds as well as 
motif cloud summaries listing the SLiMs making each cloud and the sequences containing one or 
more SLiMs in that cloud.  

The rest of the file contains matrices listing the proportion of the entire dataset and of each other 
cloud contained by each motif cloud. Each row is a cloud, identified by its ID number and most 
significant SLiM in the first column. The second column is proportion of the sequences or UPCs in the 
whole dataset that contains one or more SLiMs in that cloud. Subsequent columns contain the same 
calculation but for the other clouds rather than the entire dataset.  

These are not necessarily reciprocal. E.g. 
 
Cloud      Dataset  1       2 

1:[DE]D[DE]F..F   0.88     1.00    0.75 

2:Q.KR..Q.{0,1}Q      0.50     0.43    1.00 
 
In this case 43% of the sequences in cloud 1 are also in cloud 2, while 75% of the sequences in cloud 2 
are also in cloud 1. (This is because the clouds are different sizes.) 

In addition to these matrices, tables are given with the statistical significance of any observed (lack of) 
overlap between clouds. The first is the probability of seeing that much overlap or more, given the 
proportion of the total dataset covered by each cloud. The second gives the probability of seeing that 
little overlap or less. 

6.5. Motif Occurrence Tables (*.occ.csv, *.dat.rank & *.out) 

In addition to the overall SLiM tables, statistics for the individual motif occurrences are also 

produced. The *.dat.rank (SLiMDisc emulator) and *.out (TEIRESIAS emulator) files simply contain a 
list of the proteins and then the protein and position for each motif occurrence in a simple one-line-

per-motif format. The *.occ.csv file contains more detailed data on each occurrence in a comma 
separated file. These field headings are mostly reasonably obvious but see the PRESTO and 
SLiMPickings manuals for more details. 

6.6. Sequence files (*.motifaln.fas, *.maskaln.fas, *.mapping.fas, 
*.masked.fas, *.motifs) 

Assuming any motifs are returned, SLiMFinder outputs a number of sequence files to aid exploration 
of the results: 

*.motifaln.fas = Alignment of all occurrences for each returned SLiM, with the surrounding sequence 
context (set using flanksize=X [default 30]) 

*.maskaln.fas = Same as above but showing masking of residues 

*.mapping.fas = Fasta file containing sequences for each input sequence. These sequences are present 
in threes for each input sequence: 
1. The significant motifs found in that sequence, aligned to (2) and (3) 
2. The full-length unmasked sequence 
3. The full-length masked sequence 

4. In addition, if alignments are used ( 7.3), each protein will have its homologues aligned.  
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*.masked.fas = The input dataset, masked. 

*.motifs = A file containing all significant motifs, plus any motifs given with the slimcheck=LIST 

option. This file is in the correct format for PRESTO or CompariMotif, or to be used as a 
slimcheck=LIST or motifseq=LIST input for future runs. 

6.7. CompariMotif Comparisons (*.compare.tdt) 

All significant motifs, plus any motifs given with the slimcheck=LIST option, are compared with 

each other using CompariMotif (Edwards et al. 2008) and the results output to *.compare.tdt. This 
allows the user to check for previously known motifs in their results. See the CompariMotif manual 
and/or website for more details. 

6.8. XGMML Cytoscape Files (*.xgmml, *.cloud.xgmml) 

For further visualisation, SLiMFinder outputs two XGMML format files that can be opened with 
Cytoscape (Shannon et al. 2003). Cytoscape is a free network visualisation tool. SLiMFinder outputs 
the input proteins and returned SLiMs as nodes of the network. UPC relationships, CompariMotif 

matches and occurrences of SLiMs in proteins are all represented as different edges (Figure  6.1). The 
file can be uploaded into Cytoscape using the File -> Import -> Network (Multiple File Types) 
command (CTRL+L). When first loaded, nodes will be displayed in a simple, uninformative, grid. Use 
one of the Cytoscape Layouts (e.g. Layout -> yFiles -> Organic) to make it clearer. Node 
(motif/protein) and edge (match/upc/occurence) can be viewed for selected nodes/edges using the 

Cytoscape Data Panel (Figure  6.2). See the Cytoscape documentation for details. 
 

 

 

Figure  6.1. Cytoscape visualisation of SLiMFinder XGMML output for LIG_CYCLIN_1. 

Proteins are blue ellipses and SLiMs are red diamonds. Black lines indicate UPC relationships 
between proteins. Blue arrows indicate occurrences of motifs in proteins. 
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Figure  6.2. Cytoscape visualisation of XGMML output for LIG_PCNA results. 

(a) Standard XGMML can get cluttered if lots of overlapping motif variants are produced. (b) The cloud 
XGMML simplifies this output by collapsing SLiMs into their clouds. Details for (c) Proteins, (d) Motifs, 
and (e) different kinds of edges can all be accessed using the Cytoscape data panel. 

 

 

NB. One current limitation of the XGMML file is that only one occurrence for each Motif-Sequence 
pair is displayed, regardless of how many occurrences there actually are. 

Sometimes, such as the results using proteins annotated with LIG_PCNA ELMs, the standard 
XGMML can become very cluttered because of all the similar, overlapping motifs that are returned 
(Figure  6.2(a)). Just as the motif cloud output ( 6.4) can simplify interpretation of raw results, so the 

cloud XGMML output (Figure  6.2(c)) can clarify visualisation in such cases. Note that occurrences are 
compressed to each cloud and so individual occurrence information is no longer available. Cytoscape 
allows multiple networks to be displayed simultaneously, however, and so occurrence details can be 
obtained through cross-referencing the standard XGMML file. 
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7. SLiM Statistics and Filtering 

 

This part of the manual is incomplete. Please feel free to experiment with the filtering options, many 
of which are shared with PRESTO, SLiMPickings and SLiMSearch. (These manuals may have more 
information.) These options are under development and should therefore be used with an element of 

caution. The rje_slimcalc.py module contains the fullest list of command-line options but see also 

rje_slimlist.py. 

7.1. Additional SLiM Calculations (slimcalc) 

The additional SLiM calculations implemented by SLiMFinder are controlled with the 
slimcalc=LIST option, where LIST is one or more of SA, Hyd, IUP, Fold, Comp and Cons. In each 

case, an additional column will be added to the *.occ.csv output ( 6.5) with the relevant calculation for 
each SLiM occurrence. In addition, a STAT_mean column will be added to the main 

resfile=FILE output ( 2.3.1 &  6.1), containing the mean of the relevant stat across all occurrences of 

the SLiM. Percentiles can also be returned in steps defined using the percentile=X option, giving 

addition STAT_pcX columns. E.g. percentile=25 will return the 0th, 25th, 50th, 75th and 100th 
percentile in columns *_pc0, *_pc25, *_pc50, *_pc75, *_pc100. This can be useful, for example, for 
identifying SLiMs for which at least 50% of occurrences meet a given criteria. 

7.1.1. Surface Accessibility [SA] 

This is calculated using a very crude SA estimate based on Janin & Wodak (Janin & Wodak 1978) over 
a 7 aa window. Each amino acid gets a SA value based on it and the 3 amino acids either side. These 
values are then averaged over the length of the SLiM. 

7.1.2. Hydropathy [Hyd] 

This is calculated using the Eisenberg scale (Eisenberg et al. 1984) over an 11 aa window, centred on 
each amino acid. The mean is then taken across the SLiM. 

7.1.3. Disorder [IUP & Fold] 

The same disorder methods used for filtering are used to calculate the mean disorder across the 

SLiM/window (see  4.1.1.). Each amino acid gets its own disorder score, ranging from 0 (ordered) to 1 
(disordered), which is then averaged over the length of the SLiM. 

7.1.4. Complexity [Comp] 

The complexity measure calculated by slimcalc is very crude. It is simply the number of different 
amino acids observed across the length of the SLiM occurrence, divided by the maximum possible 
number, which is the length of the motif or twenty, whichever is smaller. E.g. a PxxPx[KR] motif 
occurrence with a sequence PASPPR would have a complexity of 4/6 = 0.6667. 

7.1.5. SLiM Conservation [Cons] 

Calculating the conservation of a SLiM occurrence is a complicated business with no clear best 
methodology. The relatedness of the proteins in the alignment is obviously expected to impact on any 
calculation, as is the general conservation of the protein as a whole. In addition, there are different 
ways to deal with ambiguity in motif definitions and/or amino acid substitutions that change only part 
of the SLiM. SLiMFinder implements a number of SLiM conservation strategies and parameters, 

which are covered in more detail in  7.2. In each case, however, a Cons value will be produced that 
ranges from 0.0 (not at all conserved) to 1.0 (completely conserved). In addition, the number of 
homologues present in the alignment used for the calculation (HomNum), the mean global percentage 
identity of these homologues (GlobID) and the mean percentage identity across the motif only (LocID) 
will be outputted. If the protein had no homologues, HomNum will be 0.0 but the conservation will be 
given as an arbitrary 1.0. 
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7.1.6. Extending Calculations to flanking regions 

For the returned occurrence statistics, a window comprising of the motif + winsize=X is used. If 

winsize < 0 then only the flanks are used and not the motif itself. This does not apply to SLiM 
conservation scores or to the Local percentage identity returned. 

7.2. SLiM Conservation Calculations 

An important function of SLiMFinder is the ability to calculate conservation statistics for each match, 

provided alignment files are provided. (see  7.3). If alignments do not exist, GOPHER (Edwards 

2006) can be used to generate them (see  7.3.1). If the identified file is not actually aligned, then 
RJE_SEQ will try to align the proteins using MUSCLE (Edgar 2004) or ClustalW (Higgins & Sharp 
1988). 

For each sequence, these alignments are used to generate the global percentage identity statistic: 

� GlobID = Mean global percentage identity between query protein and homologues. This is 
calculated direct from the alignments, excluding matches of Xs, and is the percentage of query 
residues that match the aligned residue in the homologue. (Note that this is an asymmetrical 
measurement and the percentage of the homologue that aligns with the query may be very 
different if the sequences are of different lengths.) 

Other conservation statistics are calculated individually for each occurrence of the motif. These are 
based on the homologous protein sequences available at that site. Any homologues with masked (X) 
residues that coincide to non-wildcard positions of the motif occurrence will be ignored from 
conservation calculations. Gaps, however, shall be treated as divergence unless the alngap=F option 

is used, in which case 100% gapped regions of homologues are also ignored (see  7.2.9). These 
additional statistics are: 

� Cons = This is the conservation score across available homologues for that occurrence 

� HomNum = Number of available homologues for that occurrence 

� LocID = Mean local percentage identity between query protein and available homologues across 
region of match 

Currently, there are four main Conservation scores implemented, which can be selected with the 
conscore=X option: 

7.2.1. Absolute Conservation [abs] 

For absolute conservation (conscore=abs), SLiMFinder first identifies the regions of the alignment 

that correspond to matches in the Query protein. Each aligned sequence is then taken in turn and the 
relevant region extracted, de-gapped, and compared to the original regular expression, i.e. the 
degenerate motif. The conservation score is then the proportion of these homologues in which the 

degenerate motif is conserved (Figure  7.1). (To calculate conservation of the specific occurrence of the 
motif, use the consamb=F option.) 

7.2.2. Positional Scoring [pos] 

Positional scoring (conscore=pos) uses a graded scoring system, where each sequence gets a score 

between 0 (no positions conserved) and 1 (all positions conserved). Each matching amino acid 

contributes a score of 1.0 (if consinfo=F (see  7.2.7)) and the sum over all positions is divided by the 

number of positions. For a degenerate site (when the default consamb=T option is used), the 

sequence must match any possible amino acid at that site. 

The scoring matrix used for this scoring can be altered using the posmatrix=FILE command, where 

FILE contains either lists of equivalent amino acids on each line (e.g. FYW would mean that any of F, 
Y or W would score 1.0 vs. any other of F, Y or W), or an all-by-all matrix of amino acids and their 
conservation scores, e.g. this might give F-F a score of 1.0 and F-Y a score of 0.5. This allows the 
method to be customised according to user-determined rules. In this case, the best score between the 
sequence and any variant of a degenerate position is used (unless consamb=F). 
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 (a) (b) (c) 
[LM].{1,2}G Q[KR][KR].Y PALVALL 

 
100% 75% 25% (or 33.3%) 

   

Figure  7.1. Absolute Conservation. 

Three motifs are found in the query protein (marked with blue stars). This protein is ignored for 
conservation statistics. The black boxes represent the region of the alignment considered for each 
match. These matches in the homologues are then compared to the original regular expression. (a) 
Motif [LM]X{1,2}G is 100% conserved because, once gaps are removed, all four homologous sequences 
match the degenerate motif. (b) For motif Q[KR][KR]XY, one sequence does not match the degenerate 
motif and the query is excluded from the calculation, giving a conservation score of ¾ = 75%. (c) Only 
one of the homologues matches the motif. By default, all four sequences are considered, giving a 
conservation score of ¼ = 25%. If the alngap=F option is used, the 100% gapped sequence is ignored 

and the conservation is therefore 1/3 = 33.3% 

 

Figure  7.2. Position-speciffc Conservation. 

The same motifs and alignments from Figure  7.1 are shown but this time position-specific 
conservation has been calculated. For simplicity, position-specific information content weighting has 
been switched off (consinfo=F) and so each position is weighted equally. (a) All positions in all 
orthologues still match, giving 100%. (b) Only one sequence does not match but now only one of the 
positions is a mismatch (D for Q) and so that sequence still gets an individual score of 75%, giving a 
total conservation of 93.8%. (c) Whereas the absolute conservation score penalises the two mismatches 
heavily, the position-specific score gives each of these sequences an individual conservation of 6/7 = 
85.7%, for a total conservation score of (2x6 + 0 + 7 / 28 =) 67.9% (or 90.5% if the alngap=F option is 
used.) 

(a) (b) (c) 
[LM].{1,2}G Q[KR][KR].Y PALVALL 

 
100% 93.8% 67.9% (or 90.5%) 
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7.2.3. AA Property Scoring [prop] 

This (conscore=prop) is really just a specific example of the posmatrix=FILE command, where an 

amino acid property matrix (aaprop=FILE) is converted into a similarity matrix ranging from 0.0 to 

1.0. By default, the property matrix of Livingstone and Barton is used (aaprop.txt) (Livingstone & 

Barton 1993). See the PEAT Appendices for more information on this matrix. 

7.2.4. Relative Conservation Scoring [rel] 

The same calculation as used for conservation masking ( 4.1.6) can also be used to calculate a 
conservation score for the motif. This is exception to the 0 < Cons < 1 rule. Relative conservation is 
centred around 0.0, with a standard deviation of 1.0, so all positive scores are good and all negative 
scores are bad. 

7.2.5. Combined Scoring [all] 

Under this scoring (conscore=all), the Cons output is the mean of the abs, pos and prop 

methods. In addition, statistics are generated for each of the individual scores: 

� Pos_Cons = Positional conservation score across homologues. 

� Abs_Cons = Absolute conservation score across homologues. 

� Prop_Cons = Property-based conservation score across homologues. 

� Rel_Cons = Relative conservation score across homologues. 

The same additional options are applied to all methods, with the exception that Positional Weighting 
by Information Content has no effect on the absolute conservation method. 

7.2.6. Motif ambiguity 

By default, conservation will use the full degeneracy of the input motif. If consamb=F is used, the 

particular matching variant will be used instead. E.g. in Figure  7.1(b), the conservation of QKXXY 
would be calculated, rather than Q[KR]XXY.  

7.2.7. Positional Weighting by Information Content 

The consinfo=T option (the default) weights the contribution of different positions of the motif 

proportionally to their information content (IC). The IC of a position ranges from 0 for a wildcard 

position to 1 for a fixed position (see  3.3.3). For a fully fixed motif, all positions will have equal 
weighting. Otherwise, ambiguous positions make a smaller contribution to the score, which is 
normalised such that a sequence that is conserved at every position of the motif gets a score of 1.0. If 
consinfo=F, all positions contribute equally. If the “Absolute” motif conservation score is used, this 

weighting has no affect. 

7.2.8. Homology Weighting 

The consweight=X option controls how the conservation scores are weighted according the 

similarity of the homologues to the query. For each sequence s, the weighting Ws is calculated using 
the global percentage identity of the query versus that sequence, Is, raised to the power of the 

consweight=X option, ω:  

Ws = Is
ω
 / ΣWs 

When ω=0 (the default), Ws = 1 and all sequences are treated equally. 

For ω=1, Ws = Is, which up-weights the contribution of sequences closely related to the query. This 
means that the comparison of conservation scores will tend to penalise divergence in closely related 
sequences and will not be so heavily influenced by incorrect orthology assignment of distantly-related 

sequences. This weighting can be increased further with ω > 1. 

For ω=-1, Ws = 1/Is, which up-weights the contribution of sequences distantly related to the query. 
This means that the comparison of conservation scores will tend to promote conservation in distantly 
related sequences but may be influenced by incorrect orthology assignment, which tends to be more of 

a problem for distantly-related sequences. This weighting can be increased further with ω < -1. 
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7.2.9. Gap Treatment 

By default, motifs that match to 100% gaps in a homologue are assumed to be due to missing or 
truncated sequences (as in the case of a draft genome, for example,) and do not contribute toward the 

relevant calculation (see Figure  7.1(c) and Figure  7.2(c)). Note that the calculation used pretends that 
these homologues are not present at all, and does not count them as conserved. If alngap=T, 

however, such sequences will be treated as divergence away from a motif and reduce the score. 
Sequences that are entirely Xs across the motif are always ignored. 

7.2.10. Taxonomic subgroupings 

In addition to the general conservation statistics produced for the given alignments, conservation 
calculations can be restricted to one or more taxonomic groups. This is achieved using the 
conspec=LIST option, where LIST is a list of files containing the UniProt species codes for the 

relevant grouping. Wildcards are allowed. Conservation analysis is then limited to these species and 
additional columns produced in the output (see below). 

e.g. If only interested in the model organisms Human, Mouse, Rat, Chicken and Xenopus, one could 
use the command conspec=model.spec_code (or conspec=*.spec_code), where 

model.spec_code contains the species codes: 

HUMAN 

MOUSE 

RAT 

CHICK 

XENLA 

This would then produce additional output columns MODEL_Cons, MODEL_HomNum, 
MODEL_GlobID and MODEL_LocID. Where multiple files were given, each file would have its own 
set of output columns. 

NB. The name all is reserved as a special key. Do not use conspec=all.spec_code. 

7.3. Protein Alignments for SLiMFinder 

SLiMFinder is designed to be able to use the output of GOPHER (Edwards 2006) for alignments of 
orthologues. Alternative sources for theses alignments can be used, as long as the format is correct. 

Alignments should be in FASTA format with descriptions on one line followed by one or more lines 
containing the sequence. All sequences should be of the same length. The first word in each 
description should be unique. e.g. 

>Seq1 And its description 

SEQUENCE-ONE-GOES-HERE 

>Seq2 

---GAPS--ARE--ALLOWED- 

>Seq3 

---BUT---ALL-SEQUENCES 

>Seq4 

MUST-BE-EQUAL--LENGTHS 

The file should be named AccNum.X, where AccNum is the accession number of the relevant protein 

in the search database, and X is given by the command alnext=X. Files should be found in a 
directory identified with the alndir=PATH command. The function to look for and use these 

alignments can be switched on using the usealn=T option. 

7.3.1. Using GOPHER to make orthologue alignments 

The program GOPHER (Edwards 2006) is provided in the download and can be called as part of the 
SLiMFinder search using the usegopher=T option. GOPHER will generate its usual files in the 

directory specified by the gopherdir=PATH option. This will generate a subdirectory named ALN, 

which will be set as the alndir=PATH parameter, if not already set. If not already set as such, the 

alnext=X option will be set to orthaln.fas. 

To use GOPHER to generate alignments for SLiM conservation, you will need: 
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1. BLAST, MUSCLE and CLUSTALW installed on your system. 

2. A sequence database containing potential orthologues. This should be identified to 
SLiMFinder using the orthdb=FILE option. 

Details of how GOPHER works can be found in the GOPHER documentation. 

7.4. Filtering output using SLiM Calculations 

Results can be filtered at two different levels using the same basic syntax: individual motif occurrences 
can be rejected based on occurrence statistics, or whole motifs can be rejected based on whole-motif 
or combined occurrence statistics. These are controlled by the occfilter=LIST and 

slimfilter=LIST commands, respectively. Any usual columns of output in either the *.occ.csv 
(occfilter) or main results file (slimfilter) can be used, including conservation scores and percentiles 
etc. The LIST is in the form “stat1>a,stat2<b,stat3=c,stat4!=d” etc. and should either be a 

comma delimited list given on the commandline, or contained in a separate file (named LIST e.g. 

statcut=my_statcut_list.txt). If not a file name, enclose in double quotes or the <> symbols 
will try to pipe input/output!  

The alllowed operators are: 

Operator  Description 

> Filtered if the stat exceeds the cut-off  

>= or => Filtered if the stat equals or exceeds the cut-off  

< Filtered if the stat is lower than the cut-off  

<= or =< Filtered if the stat is lower than or equal to the cut-off 

= or == Filtered if the stat is equal to the cut-off  

!= or <> Filtered if the stat is not equal to the cut-off  

 
All these may be applied to any stat, included text fields. Stat names should match the column headers 
of the output (case-insensitive). If a stat is given that is not recognised, SLiMFinder will report an 
error but continue processing without that stat cut-off. Note that the occurrences/SLiMs that meet the 
given criteria are removed (filtered).  

Warning! Applying > or < to strings (i.e. non-numerical attributes) should be used with caution, 
though Python does seem to process them consistently with alphabetical sorting. 

7.5. SLiM calculation/filtering options 

Table  7.1 gives a summary of the main SLiM calculation and filtering options. Please check module 
documentation for latest developments. 
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Table  7.1. SLiM calculation/filtering options. 

Option Description Default Manual 

slimcalc=LIST List of additional attributes to calculate for occurrences - 
Cons,SA,Hyd,Fold,IUP,Chg,Comp 

[]  7.1 

winsize=X Used to define flanking regions for calculations. If negative, 
will use flanks *only* 

[0]  7.1.6 

percentile=X Percentile steps to return in addition to mean [0]  7.1 

usealn=T/F Whether to search for and use alignemnts where present. [False]  7.3 

alnext=X File extension of alignment files, AccNum.X (checked 
before Gopher used). 

[False]  7.3 7.3.1 

usegopher=T/F Use GOPHER to generate missing orthologue alignments. [False] 7.3.1 

gopherdir=PATH Path from which to call Gopher (and look for 
PATH/ALN/AccNum.orthaln.fas) 

[./] 7.3.1 

fullforce=T/F Whether to force regeneration of alignments using 
GOPHER. 

[False] 7.3.1 

orthdb=FILE File to use as source of orthologues for GOPHER. [] 7.3.1 

conscore=X Type of conservation score used: 
- abs = absolute conservation of motif using RegExp over 
matched region 
- pos = positional conservation: each position treated 
independently 
- prop = conservation of amino acid properties 
- all = all three methods for comparison purposes 

[pos]  7.2 

conspec=LIST List of species codes for conservation analysis. Can be 
name of file containing list. 

[None]  7.2.10 

consamb=T/F Whether to calculate conservation allowing for degeneracy 
of motif (True) or of fixed variant (False) 

[True]  7.2.6 

consinfo=T/F Weight positions by information content (does nothing for 
conscore=abs) 

[True]  7.2.7 

consweight=X Weight given to global percentage identity for conservation, 
given more weight to closer sequences - 0 gives equal 
weighting to all. Negative values will upweight distant 
sequences. 

[0]  7.2.8 7.2.9 

alngap=T/F Whether to count proteins in alignments that have 100% 
gaps over motif (True) or (False) ignore as putative 
sequence fragments. (NB. All X regions are ignored as 
sequence errors.) 

[False] 7.2.8 

posmatrix=FILE Score matrix for amino acid combinations used in pos 
weighting. (conscore=pos builds from propmatrix) 

[None]  7.2.2 7.2.3 

aaprop=FILE Amino Acid property matrix file. [aaprop.txt] 7.2.3 

slimfilter=LIST List of stats to filter (remove matching) SLiMs on, consisting 
of X*Y: 

- X is an output stat (the column header), 
- * is an operator in the list >, >=, !=, =, >= ,<     
- Y is a value that X must have, assessed using *. 
!!! Remember to enclose in "quotes" for <> filtering !!! 

[]  7.4 

occfilter=LIST Same as slimfilter but for individual occurrences. []  7.4 
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8. The SLiMFinder Webserver 

The SLiMFinder webserver can be found at http://bioware.ucd.ie/slimfinder.html. This gives 
access to the main input page (Error! Reference source not found.). Online help is extensive and 
links can be found on the left-hand side. For full functionality, including conservation masking, input 
a list of UniProt IDs or accession numbers and click "Get Sequences". Alternatively, sequences can be 
directly pasted into the text box or a file uploaded. Formatting restrictions match that of the main 
SLiMFinder program.  If you have already run SLiMFinder on a dataset, you can input the job ID and 
click "Get job" to jump straight to the results.  

Additional parameter settings can be accessed using the tabs on the input page (Figure  8.2). These 

match the commandline options listed above (Chapter  2.4) and should be set accordingly. Once 
options have been set, the “Submit job” button will set SLiMFinder running. Running jobs can be 
monitored or bookmarked for later access. Once a job has finished, an interactive results page (Figure 

 8.3) will open to visualise and explore results. Full details can be found on the website. 

NB. The webserver is not updated with every SLiMFinder update, so please check the Version 
number. Furthermore, not all options are available through the web implementation. 

 

 

Figure  8.1. SLiMFinder webserver front page. 
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A. 

 

B. 

 

C. 

 

Figure  8.2. SLiMFinder webserver options pages.  

The SLiMFinder webserver itself contains help for these pages. A. Downloaded UniProt entries. B. 
Alternative sequence input. C. Run options. 
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Figure  8.3. SLiMFinder webserver main results page.  

Summarised results for each motif are initially displayed. These can be expanded to reveal individual 
occurrences in each protein for each motif. Alignments can be generated to explore the unmasked and 
masked sequence context for each motif “(M|A)” or to examine the region around a specific motif 
occurrence in a single protein (Plot). All visualisations can be exported as PNGs or high quality PDFs. 
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9. Appendices 

 

9.1. Troubleshooting & FAQ 

Please also see general items in the PEAT Appendices document and contact me if you experience any 
problems not covered.  

� Many problems can arise when sequence names have underscores in them but the naming format 
does not match known databases. (Typically, this might produce a “KeyError” during UPC 
generation.) Try using gnspacc=F and hopefully this problem will go away. 

� If you get hundreds/thousands of significant motifs, it might be that one or more input sequences 
are too short for detectable BLAST homology using default settings. You can try tinkering with the 
blast e-value cut-off (blaste=X) or, more safely, manual make the UPC file for such datasets (see 

 6.2 for details). 

9.2. QuickStart Guide 

Download and install python from www.python.org. 

Unzip slimfinder.zip in chosen directory. (A slimfinder subdirectory will be created.) 

Download and install BLAST (Altschul et al. 1990) from NCBI if you have not already: 
http://www.ncbi.nlm.nih.gov/blast/download.shtml. 

Create a slimfinder.ini file in the slimfinder directory. This should contain any default parameter 

settings and, most importantly, the path to the BLAST programs in the form: blastpath=X (e.g. 
blastpath=c:/bioware/blast/). If running in Windows, this file should also contain the option 

win32=T. 

(Open a command-line window and) enter the chosen run directory containing the input files. 

Run SLiMFinder, giving the installation path,  
E.g. python c:\\bioware\\slimfinder\\slimfinder.py.  

Results will be output to slimfinder.csv and SLiMFinder/*.* with run details in the slimfinder.log log 
file. 

By default, SLiMFinder will run on all *.dat and *.fas files in the directory. To specify a single file, use 
the seqin=FILE command. To give an alternate list of files, use batch=LIST (e.g. 

batch=datasets/*.fas) 

See full details in this manual for explanation of outputs and command-line options. 
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