

Rich Edwards 7 February 2006

Generation of Orthologous
Proteins from High-throughput
Evolutionary Relationships

Richard J. Edwards (2006)

1: Introduction ... 2
1.1: Version ..2
1.2: Using this Manual ..2
1.3: Getting Help ..2
1.4: Why use GOPHER?...3
1.5: Installation..3

1.5.1: Files Required ...3
1.5.2: Programs Used by GOPHER...4
1.5.3: Setting up the INI File ..4

2: Fundamentals ... 5
2.1: Running GOPHER...5

2.1.1: The Basics ...5
2.1.2: Interactivity and Verbosity settings..5
2.1.3: Forking..5
2.1.4: Options..5

2.2: Input ...5
2.2.1: Input sequences ...5
2.2.2: Removing ‘Variant’/In-Paralogue Queries..6
2.2.3: Limiting Orthologues by Species/Database ..6

2.3: Output ...7
2.3.1: Log Files ..7

3: The GOPHER Algorithm .. 8
3.1: Algorithm Overview...8

3.1.1: Controlling Which Parts of GOPHER Run ..10
3.1.2: Saving disk space..10

3.2: GABLAMO Sequence Similarity ..11
3.3: Recommended BLAST Database..12

4: Appendices ...13
4.1: Appendix I: Command-line Options ..13

4.1.1: How to Use this Section ..13
4.1.2: Option Types ...13
4.1.3: INI Files ..13
4.1.4: Option Precedence ..13
4.1.5: Forking Options...14
4.1.6: Command-line Options ...14

4.2: Appendix II: Distributed Python Modules ...17
4.3: Appendix III: Log Files ..17
4.4: Appendix IV: Species Codes for IPI & EnsEMBL ..18
4.5: Appendix V: Troubleshooting ..19
4.6: Appendix VI: References ...19

2 GOPHER

Rich Edwards 7 February 2006

1: Introduction
Software manuals are boring: boring to write and probably even more boring to read. I have
therefore tried to keep this one concise. However, given (a) my propensity to waffle, (b) the
fact that I am a biologist and not a computer scientist, and (c) my lack of experience in
writing manuals, there is a good chance that the pleiotropic affect of this is a lack of clarity
and/or coherence. For this I apologise, and encourage anyone out there to send in errata

and/or suggested improvements. The fundamentals should be covered under the Section 2
Fundamentals, including Input, and Output. More details can be found in later sections
and gluttons for punishment can get even more information in the Appendices.

Like the software itself, this manual is a ‘work in progress’ to some degree. If the version
you are now reading does not make sense, then it may be worth checking the website to
see if a more recent version is available, as indicated by the Version section of the manual.

Good luck.

Rich Edwards, 2006.

1.1: Version
This manual is designed to accompany GOPHER version 1.7.

The manual was last edited on 07 February 2006.

1.2: Using this Manual
As much as possible, I shall try to make a clear distinction between explanatory text (this)

and text to be typed at the command-prompt etc. Command prompt text will be written

in Courier New to make the distinction clearer. Program options, also called ‘command-

line parameters’, will be written in bold Courier New (and coloured red for fixed

portions or dark red for user-defined portions, such as file names etc.). Command-line

examples will be given in (purple) italicised Courier New. Optional parameters will

(where I remember) be [in square brackets]. Names of files will be marked in normal text

by (dark yellow) Bold Times New Roman.

1.3: Getting Help
Much of the information here is also contained in the XXX website

(http://www.bioinformatics.rcsi.ie/~redwards/) and the documentation of the Python
modules themselves. A full list of command-line parameters can be printed to screen using

the help option, with short descriptions for each one.

python gopher.py help

If none of the above are of help, then please e-mail me (richard.edwards@ucd.ie) whatever
question you have. If it is the results of an error message, then please send me that and/or
the log file (see Output) too. Usually, it will be a problem with the input files (possibly
formatting) but there are probably still a few bugs in there somewhere too.

Generation of Orthologous Proteins 3

Rich Edwards 7 February 2006

1.4: Why use GOPHER?
The rapid and automated generation of orthologous protein datasets is useful for many
bioinformatics applications. True orthologue identification requires the use of phylogenetic

information, in which outgroup sequences are used to identify the closest clustering
homologues in the different species. Phylogenetic analysis can also identify “in-paralogues”
– lineage-specific gene duplications – which can hinder compilation of orthologues as they

are both true orthologues to the same protein in a different species. For high-throughput
analyses, this can be impractical. Identifying suitable outgroups is not a trivial task and
phylogenetic inference has its own weaknesses and biases. As a result, pairwise sequence
comparisons are routinely used in its place.

One common approach is to use BLAST (Altschul et al. 1990) scores or e-values. For
example, orthologues are often identified using the “Mutual Best Hit” (MBH) approach.
Under this model, human sequence A and mouse sequence B are only considered
orthologues if A has the best score when B is BLASTed against the human genome, and B

has the best score when A is BLASTed against the mouse genome. MBH has severe flaws,
however. In-paralogues in one species will be missed, with only one identified as an
orthologue, while in-paralogues in both the species being compared may disrupt the MBH

assignment totally. Using BLAST for this purpose introduces even more problems. BLAST
scores are notoriously sensitivity to sequence length and multi-domain proteins. If multiple
regions of one protein are homologous to the same region of the other then the BLAST

score will be artificially amplified. At the other end of the scale, unrelated proteins will
generate BLAST hits if they both contain similar low complexity regions, such as poly-
glutamine repeats or leucine-rich regions. This can be avoided using the Complexity Filter

but at the risk of artificially decreasing the BLAST scores of closely related sequences with
low complexity regions, which are of most interest for orthologue assignment.

GOPHER attempts to combine the high speed of BLAST MBH-based methods with the
accuracy obtained by phylogenetic inference. By considering the relative sequence
similarities of a query sequence, different putative orthologues, and paralogous sequences,

GOPHER identifies those proteins that, assuming an approximately constant rate of evolution
within the protein family, should be true orthologues of the query sequence. Details are
given in section 3: The GOPHER Algorithm.

1.5: Installation
GOPHER is distributed as a number of open source Python modules. It should therefore
work on any system with Python installed without any extra setup required – simply copy
the relevant files to your computer and run the program (see Running GOPHER, below.)

If you do not have Python, you can download it free from www.python.org at
http://www.python.org/download/. The modules are written in Python 2.4. The Python
website has good information about how to download and install Python but if you have any
problems, please get in touch and I will help if I can.

1.5.1: Files Required

The following files are required for the program to run correctly. All these files should have

been provided in the download zip file. The Python Modules are open source and may be
changed if desired, although please give me credit for any useful bits you pillage. I cannot
accept any responsibility if you make changes and the program stops working, however!

Note that the organisation of the modules and the complexity of some of the classes is due
to the fact that most of them are designed to be used in a number of different tools. As a
result, not all the options listed in the __doc__() (help) will be of relevance. If you want

4 GOPHER

Rich Edwards 7 February 2006

some help understanding the way the modules and classes are set up so you can edit them,
just contact me.

The additional files may all be replaced with other files in the correct format. These files are

described later in this manual and/or in the Appendix.

Python Modules (*.py): gopher, rje, rje_blast, rje_dismatrix, rje_seq, rje_pam,

rje_sequence, rje_uniprot

1.5.2: Programs Used by GOPHER

In addition to the python modules listed above, GOPHER makes use of the following
published programs. These are freely available for downloading and installing. It is

recommended that the user downloads and installs these programs according to the
instructions given on the appropriate website.

BLAST: BLAST (Altschul, et al. 1990) is freely available for download from NCBI at:

http://www.ncbi.nlm.nih.gov/blast/download.shtml.

CLUSTALW: ClustalW (Higgins and Sharp 1988, Thompson et al. 1994) is an old stalwart
for bioinformatics and is freely available from EMBL: ftp://ftp-igbmc.u-

strasbg.fr/pub/ClustalW/. Note that CLUSTALW is used as a backup for MUSCLE (below).

MUSCLE: MUSCLE (Edgar 2004) is a newer multiple alignment program available from
http://www.drive5.com/muscle.

1.5.3: Setting up the INI File

It is recommended that a gopher.ini file is made and placed in the same directory as the

gopher.py program. This file should contain the paths to the above programs:

blastpath=PATH

clustalw=COMMAND

muscle=COMMAND

Note that the first is a path to the BLAST programs, while for ClustalW and MUSCLE the
actual program commands themselves must be included. This is to make it easier to replace
these programs with alternatives. (See Replacing Components with Other Programs.)

See the included gopher.ini file for an example. If running in windows, it is also advisable to

add the win32=T command to the *.ini file.

NB. For PATH variables, directories should be separated by a forward slash (/). If paths

contain spaces, they should be enclosed in double quotes: path=“example path”. It is

recommended that paths do not contain spaces as function cannot be guaranteed if they do.

Generation of Orthologous Proteins 5

Rich Edwards 7 February 2006

2: Fundamentals

2.1: Running GOPHER

2.1.1: The Basics

If you have python installed on your system (see Installation), you should be able to run
GOPHER directly from the command line in the form:

python gopher.py gopher=FILENAME orthdb=FILENAME

If running in Windows, you can just double-click the gopher.py file provided that there is a

gopher.ini file with all the commands. GOPHER is not currently implemented to be menu

driven.

IMPORTANT: If filenames contain spaces, they should be enclosed in double quotes:
gopher=“example file”. That said, it is recommended that files do not contain spaces

as function cannot be guaranteed if they do.

2.1.2: Interactivity and Verbosity settings

By default, GOPHER will run through to completion without any user-interaction if given all
the options it needs. For more interaction with the program as it runs, use the argument

'i=1'

python gopher.py gopher=gopher_eg.fas orthdb=metazoa.fas i=1

Both the level of interactivity and the amount printed to screen can be altered, using the

interactivity [i=X] and verbosity [v=X] command-line options, respectively, where X is the

level from none (-1) to lots (2+). Although in theory i=-1 and v=-1 will ask for nothing

and show nothing, there is a good chance that some print statements will have escaped in
these early versions of the program. There is also the possibility that accessory programs
may print things to the screen beyond the control of GOPHER.

Please report any irritations and suggestions for changes to what is printed at different

verbosity levels.

2.1.3: Forking

If using a multiple processor machine in UNIX, GOPHER can fork out multiple processes to
increase processing speed using the forks=X option. Each query sequence is processed by

a different fork. See 4.1.5: Forking Options for details.

2.1.4: Options

At first, you will probably want to run the program with its default parameters. If you want
to change them, there are a number of parameters that can be set by the user and other

options. These are described in the relevant sections and summarised in 4.1: Command-
line Options. These may be given after the run command, as above, or loaded from one or

more *.ini files (see for 4.1.3: INI Files for details).

2.2: Input

2.2.1: Input sequences

The main input for GOPHER is two fasta files of protein sequences:

1. The query sequences (gopher=FILE)

6 GOPHER

Rich Edwards 7 February 2006

2. The search database (orthdb=FILE)

To get the most out of the program, one of the set fasta formats from common sequence

databases should be used. The included manual for the rje_seq.py sequence manipulation

module has more details on formats and reformatting/filtering of input sequences.

IMPORTANT: Accession numbers in the query sequence file must be unique and must be
in the search database also. The first word for each sequence name in the search
database must also be unique (as for any BLAST database to function correctly.)

2.2.2: Removing ‘Variant’/In-Paralogue Queries

If searching with a redundant query dataset, the allqry=F option can be used to only

retain the “best” sequence of any “In-Paralogues” (lineage-specific duplicates), splice
variants etc. (see 3: The GOPHER Algorithm). Where such variants exist, the “best” one
will be selected according the source database and, where the database is the same, the

longest sequence will be retained. (The database hierarchy can be set using the
dblist=X,Y,..,Z option, where X,Y,..,Z constitutes a list of databases in order of

preference (good to bad). See the manual for RJE_SEQ for details.)

It is recommended to use a non-redundant database for the query input, such as IPI

(Kersey et al. 2004), and leave the allqry=T/F option set to True. IPI can be converted

into an optimal format for use with GOPHER using the supplied fasta_reformat.pl script:

perl fasta_reformat.pl FILE

This file can also be used to reformat EnsEMBL known, novel and abinitio downloads into
more accessible fasta files from which GOPHER can read the species information. If this
does not work for some files, try renaming the known, novel and abinitio files from, e.g.

Anopheles_gambiae.MOZ2a.dec.pep.abinitio.fa to ens_ANOGA.abinitio.fas, or

Mus_musculus.NCBIM34.dec.pep.novel.fa to ens_MOUSE.novel.fa, where ANOGA is

the SwissProt species codes for Anopheles gambiae and MOUSE is the code for Mus
musculus (see 4.4: Appendix IV: Species Codes for IPI & EnsEMBL for more species
codes).

2.2.3: Limiting Orthologues by Species/Database

In addition to controlling the returned orthologues by restricting the sequences in the search

database, a number of filters can be applied to the orthologous dataset returned, including
species and database filters, using the goodX=LIST (retention) and badX=LIST (exclusion)

options, where X is one of the following:

� acc = list of accession numbers

� seq = list of sequence names

� spec = list of species codes

� db = list of source databases [sprot,ipi,uniprot,trembl,ens_known,ens_novel,ens_scan]

� desc = list of terms that, at least one of which must be in description line

The LIST element can be a list X,Y,..,Z or a file containing the relevant terms. E.g.

goodspec=HUMAN,MOUSE,RAT baddesc=bad_desc.txt would only retain sequences

annotated as having the species codes HUMAN, MOUSE or RAT and would exclude any of
these sequences that have any of the terms from the file bad_desc.txt in their description

lines. These filters are described in more detail in the manual for RJE_SEQ.

Generation of Orthologous Proteins 7

Rich Edwards 7 February 2006

2.3: Output
The main output for GOPHER is series of directories containing output files from the
different stages of the GOPHER Run.

1. BLAST (BLAST/)

2. Orthology (ORTH/)

3. Alignment (ALN/)

4. (Optional) paralogue alignment (PARALN/)

Within each directory, all files are named in the form AccNum.*, where AccNum is the

accession number of the query. Main output is the alignment of orthologues,

ALN/*.orthaln.fas. A full list of output files is given below:

File Description Directory

*.blast The main BLAST results file from the initial BLAST against

the search database (one-line hits only)

BLAST

*.blast.id The fastacmd IDs of the hits from the initial BLAST BLAST

*.gopher_blast Statistics on the BLAST results. BLAST

*.qry The query sequence BLAST

*.para.fas Paralogues in fasta format ORTH

*.minsim.fas All hits exceeding minimum similarity, in fasta format ORTH

*.orth.fas Putative Orthologues in fasta format ORTH

*.gopher_orth Statistics for the putative orthologues ORTH

*.orthaln.fas Alignment of orthologues ALN

*.gopher_alnfas Statistics of orthologue alignment ALN

*.paraln.fas Alignment of paralogues in fasta format PARALN

*.gopher_paraln Statistics of paralogue alignment. PARALN

Statistics files are delimited text files. The headers can be found in the main directory in
*.header files. When concatenated, these files can be converted to MySQL build statements
using rje_mysql.py.

2.3.1: Log Files

The GOPHER log file records information that may help subsequent interpretation of results

or identify problems. Probably it’s most useful content is any error messages generated. By

default the log file is gopher.log but this can be changed with the log=FILE option. Logs

will be appended unless the newlog option is used.

8 GOPHER

Rich Edwards 7 February 2006

3: The GOPHER Algorithm

3.1: Algorithm Overview
An overview of GOPHER is given in Figure 1. The default protocol is as follows:

1. BLAST the sequence database (see 3.3: Recommended BLAST Database),
reporting the first 1000 hits with a BLAST threshold of e=10-4 and the complexity

filter on.

2. Repeat the BLAST of the query against the initially detected homologues with a very
relaxed threshold of e=10 and without the complexity filter, and use the GABLAMO

algorithm (see 3.1.1: GABLAMO Sequence Similarity) to filter out any sequence
with less than 40% global percentage similarity with the query, i.e. at least 40% of
residues in the query must be similar to each potential orthologue, and keep only the

most similar sequence to the query for each species. The minimum level of similarity
can be changes using the minsim=X option. To use percentage identity or coverage

instead of similarity, use the gablamo=X option, where X can be Sim (similarity), ID

(identity) or Len (coverage).

By default, the focus of the similarity score is the query, i.e. the GABLAMO
percentage similarity, identity or coverage of the query sequence is used. GABLAMO

is asymmetric (see 3.1.1: GABLAMO Sequence Similarity) and so the percentage
similarity, identity or coverage of the homologue may not meet the threshold even if

the query does. To change the focus of the similarity measure, use the simfocus=X

option, where X can be:

a. query (default): %query must > minsim. (Best if query is ultimate focus and

maximises closeness of returned orthologues)

b. hit: %hit must > minsim. (Best if lots of sequence fragments are in

searchdb and should be retained)

c. either:= %query > minsim OR %hit > minsim. (Best if both above

conditions are true)

d. both: %query > minsim AND %hit > minsim. (Gets most similar sequences

in terms of length but can be too stringent.)

3. Filter out chimp sequences as they are too closely related too their human
orthologues and can disrupt the filtering of splice variants (below).

4. Each paralogue (homologous proteins in the same species) is identified and used to
query the remaining orthologues as in (2), generating GABLAMO percentage
similarity statistics.

5. Filter out in-paralogues (species-specific duplicates) and splice variants, as these will
share the same set of “true orthologues” as the query. These are identified as those
paralogues which:

a. Have a greater percentage similarity to the query than any sequence of a
different species.

b. The query has a greater percentage similarity to the paralogue than any
sequence of a different species.

6. Putative orthologues are then identified (Figure 2). To be considered an orthologue:

Generation of Orthologous Proteins 9

Rich Edwards 7 February 2006

a. If the orthologue is within the same clade as the query, i.e. diverged from the
query more recently than the closest paralogue:

i. The query must have a higher global percentage similarity with the

sequence than any other sequence of same species.

ii. The sequence must have a higher global percentage similarity with
the query than with the closest paralogue.

iii. The query must have a higher global percentage similarity with the
sequence than with the closest paralogue.

b. If the orthologue is outside of the most recent post-duplication clade for the

query, it must not be within the post-duplication clade for another paralogue.
For such an orthologue, if the query protein is not the closest protein of the

query species:

i. The query must have a higher global percentage similarity to the
putative orthologue’s closest paralogue than to the putative

orthologue.

ii. The putative orthologue’s closest paralogue must have a higher global
percentage similarity to the query than to the putative orthologue.

If the postdup=T option is used, these orthologues will be ignored.

7. The remaining orthologues are then aligned using MUSCLE (Edgar 2004).

8. If paralign=T (default), the paralogues will also be aligned using MUSCLE (Edgar

2004). If the parasplice=T option is used, these will include IPI splice variants

that have been filtered out as in-paralogues.

Figure 1. Overview of GOPHER process. Potential orthologues are removed at each of the four
stages marked by red arrows.

10 GOPHER

Rich Edwards 7 February 2006

Figure 2. Example Orthologue Identification with GOPHER. (a) Example selection of orthologous
proteins for human protein H1a, circled in blue. Inparalogue H1b is removed. Mouse sequences M1a
and M1b are both orthologues of H1a but M1b is arbitrarily removed in favour of the closer M1a. C1 is
the closest chicken sequence but is closer to H2. Similarly, sheep sequence S1 is part of the H3
clade. X1a is considered an orthologue, even though H2 is the closest human sequence to it,
because H2 is closer to H1a than either is to X1a, while H3 is further from both H1a and X1a. H,
human; M, mouse; R, rat; C, chicken; S, sheep; X Xenopus; (b) Table summarising relationships.
Seq, sequence ID from (a); Human, closest human sequence; Best, whether closest sequence of
species to H1a; Orth, whether a true orthologue of H1a.

3.1.1: Controlling Which Parts of GOPHER Run

By default, GOPHER will be run to conclusion on all query sequences. To run GOPHER up to

a certain point only, use the orthblast, orthfas and orthalign options. To skip part

of the input file and start at a particular sequence (e.g. if picking up from killing the program

for any reason), use the startfrom=X option, where X is an accession number or

sequence ID. When GOPHER is running at a given level of execution (orthblast,

orthfas or orthalign) and the files from a previous level are missing, they will be

generated. To turn this off, and only run the selected level, use repair=F. E.g. to only

align those query datasets for which orthologues have already been identified, use the

commands orthalign repair=F.

If GOPHER is run and some results files already exist, then those parts of GOPHER will be
skipped. By default, these files will only be used if they are newer than the files needed to
generate them. To over-ride the time/date check and use existing results files of any age,

use the ignoredate=T option. To force GOPHER to regenerate results for the given level

of execution (orthblast, orthfas or orthalign), use the force=T option. To force

GOPHER to regenerate results for all levels, use the fullforce=T option.

3.1.2: Saving disk space

A full GOPHER run on a large query dataset will use up quite a lot of disk space. To reduce
this somewhat, GOPHER will delete some of the intermediate files during execution. To keep
these extra intermediates, use the savespace=F option.

Generation of Orthologous Proteins 11

Rich Edwards 7 February 2006

3.2: GABLAMO Sequence Similarity
Although fast to generate, using BLAST scores or e-values alone for measuring relative
sequence similarity introduces many problems. BLAST scores are notoriously sensitivity to

sequence length and multi-domain proteins. If multiple regions of one protein are
homologous to the same region of the other then the BLAST score will be artificially
amplified. At the other end of the scale, unrelated proteins will generate BLAST hits if they

both contain similar low complexity regions, such as poly-glutamine repeats or leucine-rich
regions. This can be avoided using the Complexity Filter but at the risk of artificially
decreasing the BLAST scores of closely related sequences with low complexity regions,
which are of most interest for orthologue assignment.

To avoid reducing the scores associated with highly similar sequences, one alternative is to
leave the Complexity Filter off and use a stricter BLAST score or e-value cut-off to filter out
weak homologues. The appropriate threshold can be hard to determine, however, as neither
BLAST score nor e-value translate into the degree of similarity in a particularly intuitive

fashion. A more intuitive measure is the percentage sequence identity or similarity between
two sequences, which can be calculated using pairwise sequence alignment programs, such
as ALIGN (Pearson 2000). The disadvantage is that performing multiple pairwise sequence

alignments is slow compared to a single BLAST search, which can have serious run-time
issues with large genomic analyses. Furthermore, pairwise sequence alignment has well
documented drawbacks (Rosenberg 2005). The most obvious is that the program will

enforce an alignment, whether the sequences have reasonable similarity or not. As a result,
when default settings are used, even random sequences will return a percentage identity of
20% or more for the shorter sequence. Furthermore, if one is interested in the overall

similarity of two sequences incorporating domain duplications or rearrangements then
pairwise alignment will fail.

GOPHER makes use the GABLAMO (Global Alignment from BLAST Local AlignMent
(Ordered)) algorithm (Edwards and Davey 2006), which returns a set of informative and
intuitive pairwise sequence similarity statistics using the results from a basic BLAST search.

GABLAMO compiles local sequences alignments generated by BLAST and returns ordered
sequence coverage, identity and similarity statistics independently for query and hit
sequences (Figure 3).

12 GOPHER

Rich Edwards 7 February 2006

Figure 3. Overview of GABLAMO (Global Alignment from BLAST Local AlignMent (Ordered))
Percentage Identity/Similarity calculations. method. (A) Each Query-Hit pair from the BLAST
search is compared in a pair-wise fashion. For simplicity, this example has used artificially short
sequences and “Domains”, which for this purpose are regions of local homology. (B) BLAST detects
five regions of local homology, labelled i-v in order of score, producing (C) five local alignments
between regions of query and hit. (D) Each local alignment is taken in order of BLAST score and
mismatches, similarities and identities transposed on to the Query and Hit, assuming that residue has
not already been assigned a better status. Pairs of Query and Hit positions are also stored. If, as in iii,
an alignment would split an existing pair of Query-Hit positions, it is judged to be in conflict with the
linear ordering of previous alignments and is not added.

3.3: Recommended BLAST Database
For mammalian analyses, it is recommended to construct a search database of the following

metazoan sequences:

1. All IPI (Kersey, et al. 2004) sequences for metazoan species.

2. All EnsEMBL (Birney et al. 2006) known and novel sequences for metazoan species
not downloaded from IPI.

3. All UniProt (Bairoch et al. 2005) metazoan sequences (October 2005 download),
excluding those species downloaded from IPI.

Versions of this assembled database will be available from the GOPHER website
(bioinformatics.ucd.ie/shields/software/gopher/) and periodically updated.

Generation of Orthologous Proteins 13

Rich Edwards 7 February 2006

4: Appendices

4.1: Appendix I: Command-line Options

4.1.1: How to Use this Section

This section lists all the Command-line options than may be of use when using GOPHER.
Note that different options are associated with different modules. These are indicated by the

name of the module given (in brackets). Default values are given [in square brackets]. Not

all the options for a given module are listed here but can be found by printing the __doc__

attribute of the module at a Python prompt, or using the help option:

print gopher.__doc__ (in Python)

python gopher.py help (commandline)

This section has not been completed. For now, the listing provided as part of the module
documentation is given. This shall be expanded with time. (Hopefully soon.) In the
meantime, please contact me if you want any further details of a specific option and/or
advice as to when (not) to use it.

4.1.2: Option Types

There are essentially three types of command-line option:

1. Those that require a value (numerical or text), option=X. Those that require a

filename as the value will be witten: option=FILE

2. True/False (On/Off) options, option=T/F. For these options:

a. option=F and option=False are the same and turn the option off

b. option, option=T and option=True are the same and turn the option on

3. List options. These are like the value options but have multiple values, separated by

commas: option=X,Y. Where .. is used, the number elements is optional, e.g.

option=X,Y,..,Z could take option=X or option=A,B,C,D. Where

option=LIST is used, the number of elements is optional and LIST could actually

be the name of a file containing the list of elements.

4.1.3: INI Files

As well as feeding commands in on the command-line, any options listed can also be save in

a plain text file and called using the option ini=FILE. Automatically, the program will read

in any options from the file gopher.ini and rje.ini, if present.

4.1.4: Option Precedence

Later options will supersede earlier ones if they are mutually exclusive. Options from an ini

file will be inserted into the list at the point the ini file is called. (At the start for rje.ini.) This

means that ini file options can be over-ruled, e.g.

gopher.py ini=eg.ini i=1 will supersede any interactivity setting in eg.ini with i=1.

gopher.py i=1 ini=eg.ini will use any interactivity setting in eg.ini and over-rule

i=1.

14 GOPHER

Rich Edwards 7 February 2006

4.1.5: Forking Options

Forking is controlled by three main parameters:

� forks=X sets the number of processes to fork at any given time.

� killforks=X sets the number of seconds without any activity from any forks before

the program will commit suicide.

� noforks=T/F sets whether forks are used at all.

IMPORTANT: Forking has been implemented for UNIX only. (Python does not support

forking in Windows.) If running in windows, use the win32=T, forks=0 or noforks=T

options.

4.1.6: Command-line Options

Option Description Default Module

 General Dataset Input/Output

gopher=FILE Loads sequences from FILE [None] gopher

orthdb=FILE BLAST database for homologue searching [None] gopher

allqry=T/F Whether all query sequences are to have
alignments etc. (If False, the 'best' in-

paralogues only are used.)

[True] gopher

startfrom=X Accession Number / ID to start from. [None] gopher

v=X Sets verbosity (-1 for silent) [0] rje

i=X Sets interactivity (-1 for full auto) [0] rje

d=X Data output level (0-3) [1] haqesac

log=FILE Redirect log to FILE [gopher.log] rje

newlog=T/F Create new log file. [False] rje

 GOPHER

postdup=T/F Restrict orthologues to within the query
species’ post-duplication clade

[False] gopher

minsim=X Minimum %similarity of Query for each
"orthologue".

[40.0] gopher

gablamo=X Measure to use for minimum %, where X can

be Sim (similarity), ID (identity) or Len

(coverage).

[Sim] gopher

simfocus=X Style of MinSim used, where X can be:

query = %query must > minsim;

hit = %hit must > minsim;

either = %query > minsim OR %hit >

minsim;
both = %query > minsim AND %hit >

minsim.

[query] gopher

paralign=T/F Whether to produce paralogue alignments
(>minsim) in PARALN/.

[True] gopher

Generation of Orthologous Proteins 15

Rich Edwards 7 February 2006

Option Description Default Module

parasplice=T

/F
Whether to allow splice variants in paralogue

alignments (where identified).

[False] gopher

orthblast Run to blasting versus orthdb (Stage 1). gopher

orthfas Run to output of orthologues (Stages 2-6). gopher

orthalign Run to alignment of orthologues (Stage 7). Default gopher

repair=T/F Repair mode - replace previous files if date

mismatches or files missing. (Skip missing
files if False)

[True] gopher

force=T/F Whether to force execution at current level
even if results are new enough.

[False] gopher

fullforce=T/

F
Whether to force current and previous

execution even if results are new enough.

[False] gopher

ignoredate=T

/F
Ignores the age of files and only replaces if
missing.

[False] gopher

savespace=X Save space by deleting intermediate blast
files during orthfas.

[True] gopher

 Sequence Filters

goodX=LIST Only keeps sequences meeting the

requirement of LIST (X,Y,..,Z or a FILE

which contains a list).

� goodacc = list of accession numbers

� goodseq = list of sequence names

� goodspec = list of species codes

� gooddb = list of source databases

� gooddesc = list of terms that, at least

one of which must be in description line

[None] rje_seq

badX=LIST As goodX but excludes rather than retains

sequences

[None] rje_seq

accnr=T/F Check for redundant Accession
Numbers/Names on loading sequences.

[False] rje_seq

seqnr=T/F Make sequence Non-Redundant [False] rje_seq

specnr=T/F Non-Redundancy within same species only [False] rje_seq

nrid=X %Identity (GABLAM) cut-off for Non-
Redundancy

[100.0] rje_seq

nrsim=X %Similarity (GABLAM) cut-off for Non-
Redundancy

[100.0] rje_seq

autofilter=T
/F

Whether to apply sequence filters upon
loading

[True] rje_seq

16 GOPHER

Rich Edwards 7 February 2006

Option Description Default Module

 System Info

blastpath=
PATH

Path to BLAST programs * Use forward
slashes (/)

['c:/bioware/
blast/']

rje_blast

clustalw=

PATH
Path to CLUSTALW program * Use forward

slashes (/)

['c:/bioware/

clustalw.exe'
]

rje_seq

muscle=PATH Path to MUSCLE * Use forward slashes (/) ['c:/bioware/

muscle.exe']
rje_seq

win32=T/F Run in Win32 Mode [False] rje

memsaver=T/F Run in “Memory Saver” mode [False] rje

 Forking

forks=X Number of forks [0] rje

killforks=X Number of seconds of inactivity before killing
forks

[3600] rje

noforks=T/F Option to over-ride and cancel forking [False] rje

Generation of Orthologous Proteins 17

Rich Edwards 7 February 2006

4.2: Appendix II: Distributed Python Modules
This appendix is liable to go out of date. Please look at the documentation within the
modules themselves for more details. (And, if you’re brave, look at the code!)

Module Description Classes

gopher Main GOPHER module containing primary
code

Gopher, GopherFork

rje General module containing Classes used
by all my scripts plus a number of
miscellaneous methods.

RJE_Object_Shell,
RJE_Object, Info, Out, Log

rje_blast Performs BLAST searches and loads

results into objects.

BLASTRun, BLASTSearch,

BLASTHit, PWAln

rje_dismatrix Contains Classes and methods for
Distance Matrix

DisMatrix

rje_pam This module handles functions associated
with PAM matrices. A PAM1 matrix is read
from the given input file and multiplied by

itself to give PAM matrices corresponding
to greater evolutionary distance. (PAM1
equates to one amino acid substitution
per 100aa of sequence.)

PamCtrl, PAM

rje_seq Contains Classes and methods for sets of
DNA and protein sequences. (Currently
only protein sequences supported.)

SeqList, Sequence, DisMatrix

rje_sequence Contains Classes and methods for
individual sequences

Sequence

rje_uniprot Contains methods for parsing UniProt info UniProt

4.3: Appendix III: Log Files
This part of the manual has not yet been written. Sorry! Contact the author if you have

questions about the log files.

18 GOPHER

Rich Edwards 7 February 2006

4.4: Appendix IV: Species Codes for IPI & EnsEMBL
The following EnsEMBL and IPI species and species codes are recognized by

rje_sequence.py:

Species Common Name Species Code

Anopheles gambiae Mosquito ANOGA

Apis mellifera Bee APIME

Bos taurus Cow BOVIN

Caenorhabditis elegans Nematode CAEEL

Canis familiaris Dog CANFA

Ciona intestinalis Sea squirt CIOIN

Danio rerio Zebrafish BRARE

Drosophila melanogaster Fruitfly DROME

Fugu rubripes Pufferfish FUGRU

Gallus gallus Chicken CHICK

Homo sapiens Human HUMAN

Macaca mulatta Macaque MACMU

Monodelphis domestica Opossum MONDO

Mus musculus Mouse MOUSE

Pan troglodytes Chimp PANTR

Rattus norvegicus Rat RAT

Saccharomyces cerevisiae Yeast YEAST

Tetraodon nigroviridis Pufferfish TETNG

Xenopus tropicalis Frog XENTR

To add more species, the extractDetails() method of the Sequence class needs to be
edited. Please contact the author for assistance.

Generation of Orthologous Proteins 19

Rich Edwards 7 February 2006

4.5: Appendix V: Troubleshooting
Currently, this is a small section as I have not had enough feedback to have FAQs, or
anything like that. Here is a list of things that I think MAY cause problems to the unwary:

• Giving file names with spaces. (Only the first word will be taken as the filename)

• Including spaces in paths to programs etc.

• Incorrect formatting of input files. Check that all the sequence names have species
codes if they are not standard UniProt or GenBank downloads.

• I’m not sure when but there is a possibility of problems if running in Windows
without the win32=T option, especially if using forks.

4.6: Appendix VI: References
Altschul SF et al. (1990). "Basic local alignment search tool", J Mol Biol, 215, 403-410.

Bairoch A et al. (2005). "The Universal Protein Resource (UniProt)", Nucleic Acids Res., 33,
D154-159.

Birney E et al. (2006). "Ensembl 2006", Nucleic Acids Res., 34, D556-561.

Edgar RC (2004). "MUSCLE: a multiple sequence alignment method with reduced time and
space complexity", BMC Bioinformatics, 5, 113.

Edwards RJ and Davey NE (2006). "GABLAM: Global Alignment from BLAST Local

AlignMent". http://bioinformatics.ucd.ie/shields/software/gablam/

Higgins DG and Sharp PM (1988). "CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer", Gene, 73, 237-244.

Kersey PJ et al. (2004). "The International Protein Index: an integrated database for
proteomics experiments", Proteomics., 4, 1985-1988.

Pearson WR (2000). "Flexible sequence similarity searching with the FASTA3 program
package", Methods Mol Biol, 132, 185-219.

Rosenberg MS (2005). "Evolutionary distance estimation and fidelity of pair wise sequence

alignment", BMC Bioinformatics., 6, 102.

Thompson JD, Higgins DG and Gibson TJ (1994). "CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice", Nucleic Acids Res, 22, 4673-4680.

