

Rich Edwards 27 July 2007

Protein Evolution

Analysis Toolkit

Richard J. Edwards (2006)

1: Introduction ... 3
1.1: Last Edit...3
1.2: Using this Manual ..3
1.3: Getting More Help ...3
1.4: Installation..4
1.4.1: Files Required ...4

1.5: Citations ..4
2: Distributed Programs ...5
2.1: BADASP ...5
2.2: CompariMotif...5
2.3: GASP..6
2.4: GABLAM...6
2.5: GOPHER...6
2.6: HAQESAC ...7
2.7: PRESTO..7
2.8: SeqMapper ..7
2.9: SLiMFinder...8

3: Appendices ... 9
3.1: Command-line Options ..9
3.1.1: How to Use this Section ..9
3.1.2: Option Types ...9
3.1.3: INI Files ..9
3.1.4: Setting up the INI File ..9
3.1.5: Interactivity and Verbosity settings..10
3.1.6: Option Precedence ..10
3.1.7: General Command-line Options ..11

3.2: Distributed Python Modules ..12
3.2.1: Main Programs..12
3.2.2: Main Accessory Applications ...13
3.2.3: Accessory Modules..14
3.2.4: Miscellaneous Additional Accessory Applications15

3.3: Additional Files Required...16
3.3.1: Amino Acid Property Matrix ..16
3.3.2: PAM Matrix File ...16
3.3.3: Using an unscaled matrix..17

3.4: External Components of PEAT Programs...17
3.5: Replacing Components with Other Programs..17
3.5.1: Alignment programs ...18
3.5.2: Tree-drawing programs ..18
3.5.3: Wrapper scripts...18
3.5.4: Incorporating Other Programs into the Python Code18

2 PEAT

Rich Edwards 27 July 2007

3.6: Log Files ..19
3.7: Troubleshooting ..19
3.8: References...20

Protein Evolution Analysis Toolkit 3

Rich Edwards 27 July 2007

1: Introduction
The Protein Evolution Analysis Toolkit is actually several different programs, each with
their own identity, functionality and, where time has allowed, manuals and websites. They
are packaged together, however, as many of the programs share common modules and
most have the same basic structure and input/output/parameter principles. This document is
designed to cover this common ground in a bit more detail so that the individual manuals do

not have to. This first section deals with a few general issues. A brief description of the
programs included in (and used by) the PEAT package is given in 2: Distributed
Programs. Finally, some of the common technical issues are considered in 3: Appendices.

There is also load of modules and functionality that is eluded to but not really described
here in much detail. If any of these interest you and you want to know more, or encourage
development into fully functional programs, again let me know.

Rich Edwards, 2007.

1.1: Last Edit
This manual was last edited on 27 July 2007. While every effort has been made to ensure
that all details here are correct as of this date, please report any errata.

1.2: Using this Manual
As much as possible, I shall try to make a clear distinction between explanatory text (this)

and text to be typed at the command-prompt etc. Command prompt text will be written

in Courier New to make the distinction clearer. Program options, also called ‘command-

line parameters’, will be written in bold Courier New (and coloured red for fixed

portions or dark red for user-defined portions, such as file names etc.). Command-line

examples will be given in (purple) italicised Courier New. Optional parameters will

(where I remember) be [in square brackets]. Names of files will be marked in normal text

by (dark yellow) Bold Times New Roman.

1.3: Getting More Help
For detailed information on any given program, please refer to the specific manuals and/or
websites accessible from my website (http://www.bioinformatics.rcsi.ie/~redwards/). There

is also some documentation in the Python modules themselves. A full list of command-line
parameters can be printed to screen using the help option, with short descriptions for each

one.

python xxx.py help

If none of the above are of help, then please e-mail me (richard.edwards@ucd.ie) whatever
question you have. If it is the result of an error message, then please send me that and/or
the log file (see 3.6: Log Files) too. Usually, it will be a problem with the input files
(possibly formatting) but there are probably still a few bugs in there somewhere too.

4 PEAT

Rich Edwards 27 July 2007

1.4: Installation
All PEAT programs are a number of open source Python modules. They should therefore
work on any system with Python installed without any extra setup required – simply copy

the relevant files to your computer and run the program as described in the relevant
manual. For ease of running from the command-line, it is recommended that you unzip the

peat_py.zip into a directory near the root, e.g. c:\bioware\. The zip will then extract into a

directory called peat. (If you have downloaded a separate download of a specific program,

this will extract into a directory named after that program.)

If you do not have Python, you can download it free from www.python.org at
http://www.python.org/download/. The modules are written in Python 2.4. The Python

website has good information about how to download and install Python but if you have any
problems, please get in touch and I will help if I can.

1.4.1: Files Required

A full list of the Python Modules included in the PEAT download, and what functions they
cover, is given in 3.2: Distributed Python Modules. Some of the programs here also
need additional input files (e.g. a PAM matrix) and/or use additional software (e.g. ClustalW)
as described in 3.3: Additional Files Required and 3.4: External Components of
PEAT Programs respectively.

If you download a specific program rather than the whole PEAT package and it fails to work
because a file is missing, please contact me and/or download the package. This shouldn’t
happen!

1.5: Citations
When citing different elements of the PEAT package please follow the instructions given in
the relevant Manuals/websites or in the appropriate part of 2: Distributed Programs.

Where external programs are called by PEAT programs, this will be indicated and suggested
references given. Please also cite these programs.

Protein Evolution Analysis Toolkit 5

Rich Edwards 27 July 2007

2: Distributed Programs
Not all of the programs distributed with PEAT have standalone functionality. This is a list of
those that do, with a brief description of the main functions of the program and the current
status of documentation etc. in the following subsections. More information can be found in
the relevant manuals and websites. If a program you want to use or know more about is
lacking documentation, then please contact me and I shall accelerate the process!

NB. This list is incomplete but (should be) being constantly updated!

Program Description Manual? Website? Server?

BADASP Prediction of residues conferring
functional specificity in protein
sequences

No Yes No

CompariMotif Motif vs Motif comparisons Yes Yes Yes

GASP Ancestral sequence prediction for
proteins

No Yes No

GABLAM BLAST results compiler & summary tool Yes Yes No

GOPHER Protein orthologue prediction Yes Yes Yes

HAQESAC Quality protein alignment and tree
generator

Yes Yes No

PRESTO Peptide/Motif searches against protein

databases

Yes Yes No

SeqMapper Simple protein sequence mapping
utility

No Yes No

SLiMFinder Ab initio Short Linear Motif Finder Yes Yes No

2.1: BADASP
Module: badasp.py

Description: BADASP uses ancestral sequence prediction from GASP (Edwards & Shields

2004) to identify large post-duplication changes in amino acid properties that have
subsequently been conserved in protein subfamilies.

Website: http://bioinformatics.ucd.ie/shields/software/badasp/.

Webserver: Coming soon!

Cite: Edwards RJ & Shields DC (2005): BADASP: predicting functional specificity in protein
families using ancestral sequences. Bioinformatics 21(22):4190-1.

2.2: CompariMotif
Module: comparimotif.py

Description: CompariMotif is a piece of software with a single objective: to take two lists of
protein motifs and compare them to each other, identifying which motifs have some degree
of overlap, and identifying the relationships between those motifs. It can be used to

compare a list of motifs with themselves, their reversed selves, or a list of previously

6 PEAT

Rich Edwards 27 July 2007

published motifs, for example (e.g. ELM (Puntervoll et al. 2003)). CompariMotif outputs a
table of all pairs of matching motifs, along with their degree of similarity (information
content) and their relationship to each other.

Website: http://bioinformatics.ucd.ie/shields/software/comparimotif/.

Webserver: http://bioware.ucd.ie/~comparimotif/.

Cite: Davey NE, Edwards RJ, Shields DC (2007): The SLiMDisc server: short, linear motif

discovery in proteins. Nucleic Acids Res. 35(Web Server issue):W455-9..

2.3: GASP
Module: gasp.py

Description: GASP uses a simple probabilistic framework to generate ancestral sequence
predictions for proteins, including gapped positions in the alignment.

Website: http://bioinformatics.ucd.ie/shields/software/gasp/.

Webserver: Coming soon!

Cite: Edwards RJ & Shields DC (2004): GASP: Gapped Ancestral Sequence Prediction for

proteins. BMC Bioinformatics 5(1):123.

2.4: GABLAM
Module: gablam.py

Description: GABLAM performs an all-by-all BLAST (Altschul et al. 1990) and generates
easily digestible summary tables based on percentage identity. GABLAM conversions of
BLAST results are also used in a number of other programs, including SLiMDisc (Davey et al.
2006), SLiMFinder and GOPHER.

Website: http://bioinformatics.ucd.ie/shields/software/gablam/.

Webserver: Coming soon!

Cite: Davey NE, Shields DC & Edwards RJ (2006): SLiMDisc: short, linear motif discovery,
correcting for common evolutionary descent. Nucleic Acids Res. 34(12):3546-54.

2.5: GOPHER
Module: gopher.py

Description: GOPHER uses GABLAM treatments of BLAST (Altschul et al. 1990) to identify

putative orthologues from a protein database, and generate alignments.

Website: http://bioinformatics.ucd.ie/shields/software/gopher/.

Webserver: http://bioware.ucd.ie/~gopher/.

Cite: Please cite the website.

Protein Evolution Analysis Toolkit 7

Rich Edwards 27 July 2007

2.6: HAQESAC
Module: haqesac.py

Description: HAQESAC is designed for generating high quality alignments of proteins
closely related to a given query protein, partitioning data into subfamilies and removing

redundancy where desired. HAQESAC uses MUSCLE (Edgar 2004) or CLUSTALW (Higgins &
Sharp 1988) for generate alignments, and CLUSTALW (Higgins & Sharp 1988) or PHYLIP
(Felsenstein 2005) for generating phylogenetic trees. Ancestral sequences are predicted

using BADASP (Edwards & Shields 2005).

Website: http://bioinformatics.ucd.ie/shields/software/haqesac/.

Webserver: None.

Cite: Edwards RJ, Moran N, Devocelle M, Kiernan A, Meade G, Signac W, Foy M, Park SDE,
Dunne E, Kenny D & Shields DC (2007): Bioinformatic discovery of novel bioactive peptides.

Nature Chem. Biol. 3(2):108-112.

2.7: PRESTO
Module: presto.py

Description: PRESTO is a search tool for searching proteins with peptide sequences or
motifs using an algorithm based on Regular Expressions. The simple input and output
formats and ease of use on local databases make PRESTO a useful alternative to web
resources for high throughput studies. Additionally, if you are interested in the conservation
of a given motif, PRESTO can be given alignment files from which to calculate conservation
statistics during the search and map motif occurrences onto. PRESTO also has the capability
to calculate estimated values for Surface Accessibility, Hydrophobicity, and Disorder.

Website: http://bioinformatics.ucd.ie/shields/software/presto/.

Webserver: Coming soon!

Cite: Please cite the website.

2.8: SeqMapper
Module: seqmapper.py

Description: SeqMapper is a simple application based on GABLAM for mapping protein
sequence from one dataset onto another, and replacing mapped sequences where desired.

This could be used for mapping sequences onto EnsEMBL or UniProt, for example, or
converting mouse proteins to their closest human orthologues.

Website: http://bioinformatics.ucd.ie/shields/software/seqmapper/.

Webserver: None.

Cite: Please cite the website.

8 PEAT

Rich Edwards 27 July 2007

2.9: SLiMFinder
Module: slimfinder.py

Description: SLiMFinder is a tool for finding over-represented protein motifs shared by
unrelated proteins.

Website: http://bioinformatics.ucd.ie/shields/software/slimfinder/.

Webserver: Coming soon!

Cite: Paper in preparation. Please cite the website for now.

Protein Evolution Analysis Toolkit 9

Rich Edwards 27 July 2007

3: Appendices

3.1: Command-line Options

3.1.1: How to Use this Section

This section lists the general Command-line options that are used in multiple programs and
may not be listed in their individual documentation. These form part of the parent
RJE_Object class inherited by all PEAT classes. Default values are given [in square brackets].

This information is also available by printing the __doc__ attribute of the rje.py module at

a Python prompt, or using the help option:

print rje.__doc__ (in Python)

python rje.py help (commandline)

Please contact me if you want any further details of a specific option and/or advice as to
when (not) to use it.

3.1.2: Option Types

There are essentially three types of command-line option:

1. Those that require a value (numerical or text), option=X. Those that require a

filename as the value will be witten: option=FILE. Those that require a directory

path as the value will be witten: option=PATH. Those that lead to an accessory

application (rather than just its path) may also be listed as option=COMMAND. Paths

and filenames should always use forward slash (/) separators, whatever the
operating system.

2. True/False (On/Off) options, option=T/F. For these options:

a. option=F and option=False are the same and turn the option off.

b. option, option=T and option=True are the same and turn the option

on.

3. List options. These are like the value options but have multiple values, separated by

commas: option=X,Y. Where .. is used, the number elements is optional, e.g.

option=X,Y,..,Z could take option=X or option=A,B,C,D. Where

option=LIST is used, the number of elements is optional and LIST could actually

be the name of a file containing the list of elements.

3.1.3: INI Files

As well as feeding commands in on the command-line, any options listed can also be save in
a plain text file and called using the option ini=FILE. Automatically, the program will read

in any options from the file named after the program (e.g. haqesac.ini) and rje.ini, if

present.

3.1.4: Setting up the INI File

It is recommended that a rje.ini file is made and placed in the same directory as the

programs. This file should contain the paths to the programs listed in 3.4: External
Programs Used by PEAT Programs:

blastpath=PATH

10 PEAT

Rich Edwards 27 July 2007

fastapath=PATH

clustalw=COMMAND

muscle=COMMAND

Note that the first two are just paths to the programs, while for ClustalW and MUSCLE the
actual program commands themselves must be included. This is to make it easier to replace

these programs with alternatives. (See 3.5: Replacing Components with Other
Programs.)

If running in windows, it is also advisable to add the win32=T command to the *.ini file.

NB. For PATH variables, directories should be separated by a forward slash (/). If paths

contain spaces, they should be enclosed in double quotes: path=“example path”. It is

recommended that paths do not contain spaces as function cannot be guaranteed if they do.

3.1.5: Interactivity and Verbosity settings

By default, the programs are generally setup to run through to completion without any user-
interaction if given all the options it needs. For more interaction with the program as it runs,
use the argument 'i=1'.

python xxx.py commandlist i=1

Both the level of interactivity and the amount printed to screen can be altered, using the

interactivity [i=X] and verbosity [v=X] command-line options, respectively, where X is the

level from none (-1) to lots (2+). Although in theory i=-1 and v=-1 will ask for nothing

and show nothing, there is a good chance that some print statements will have escaped in
these early versions of the program. There is also the possibility that accessory programs

may print things to the screen beyond the control of the calling program.

Please report any irritations and suggestions for changes to what is printed at different
verbosity levels.

3.1.6: Option Precedence

Later options will supersede earlier ones if they are mutually exclusive. Options from an ini
file will be inserted into the list at the point the ini file is called. (At the start for rje.ini.) This

means that ini file options can be over-ruled, e.g.

xxx.py ini=eg.ini i=1 will supersede any interactivity setting in eg.ini with i=1.

xxx.py i=1 ini=eg.ini will use any interactivity setting in eg.ini and over-rule i=1.

Protein Evolution Analysis Toolkit 11

Rich Edwards 27 July 2007

3.1.7: General Command-line Options

The table below contains the most common command-line options used in PEAT programs.

The Module column gives some information on which programs/modules are affected by the
command:

• all = all modules use this command

• most = most of the programs in PEAT will use this command

• limited = only a few programs in PEAT use this command

To be safe, you should refer to the specific program documentation, especially if the

program behaves counter to expectation.

Option Description Default Module

 General Input/Output Options

v=X Sets verbosity (-1 for silent) [0] all

i=X Sets interactivity (-1 for full auto) [0] all

log=FILE Redirect log to FILE [program.log] all

newlog=T/F Create new log file. [False] all

help Prints help documentation to screen. [False] all

basefile=FILE This will set the 'root' filename for output
files (FILE.*), including the log

[None] limited

outfile=FILE This will set the 'root' filename for output
files (FILE.*), excluding the log.

[None] limited

append=T/F Append to results files rather than overwrite. [False] most

mysql=T/F “MySQL output” with lowercase headers that
lack spacers.

[False] most

delimit=X Sets standard delimiter for results output

files.

[varies] most

force=T/F Force to regenerate data rather than keep
old results.

[False] limited

 System Info

win32=T/F Run in Win32 Mode [False] all

memsaver=T/F Run in “Memory Saver” mode [False] limited

 Forking

forks=X Number of forks [0] limited

killforks=X Number of seconds of inactivity before killing
forks

[3600] limited

noforks=T/F Option to over-ride and cancel forking [False] limited

12 PEAT

Rich Edwards 27 July 2007

3.2: Distributed Python Modules
This appendix is liable to be out of date. The Exec column indicates whether the module
has standalone functionality. Those with an asterisk have additional documentation

(manuals and/or websites) of their own. For other modules, please run with the help option

for more details or see the distributed readme.txt or readme.html files.

The Python Modules are open source and may be changed if desired, although please give
me credit for any useful bits you pillage. I cannot accept any responsibility if you make
changes and the program stops working, however!

Note that the organisation of the modules and the complexity of some of the classes is due
to the fact that most of them are designed to be used in a number of different tools. As a

result, not all the options listed in the __doc__() (help) will be of relevance. If you want

some help understanding the way the modules and classes are set up so you can edit them,

just contact me.

3.2.1: Main Programs

These are the main programs that are called using the command-line and (should) have
reasonable documentation including websites and manuals. See also 2: Distributed
Programs for more details.

Module Description Classes Exec

badasp This module contains the main BADASP
method, which calls the relevant methods
from the other modules and handles results
output.

- Yes*

comparimotif Master module for CompariMotif program. CompariMotif Yes*

compass Compares UniProt annotation and motif
prediction etc. across homologous proteins.

Compass Yes*?

gablam Main GABLAM module containing primary
code

BAM Yes*

gasp Main GASP control module. - Yes*

gopher Main GOPHER module containing primary
code

Gopher,
GopherFork

Yes*

haqesac Master module for HAQESAC program.
Controls main thread and objects.

HAQESAC Yes*

presto Main PRESTO module containing primary
code

Presto,
PrestoSeqHit,

PrestoHit

Yes*

slim_pickings SLiMDisc results compiler and manipulator. SlimPicker Yes*

Protein Evolution Analysis Toolkit 13

Rich Edwards 27 July 2007

3.2.2: Main Accessory Applications

As well as the main applications, there are a number of subsidiary applications that, in

addition to providing functional classes and methods to the above programs, have
worthwhile functionality by themselves. Documentation for most of these is more limited but
I am happy to tell people how to use any that sound of interest.

Module Description Classes Exec

rje_blast Performs BLAST searches and loads results
into objects. Performs GABLAM calculations.

BLASTRun,
BLASTSearch,
BLASTHit, PWAln

Yes

rje_dbase Module to Handle Database manipulations
and generation of species-specific databases
etc. Includes indexing of local UniProt for use

with rje_uniprot.

DatabaseControll
er

Yes

rje_mysql Module for converting delimited text files to
MySQL tables

MySQL, Table,
Field

Yes

rje_pam This module handles functions associated

with PAM matrices. A PAM1 matrix is read
from the given input file and multiplied by
itself to give PAM matrices corresponding to
greater evolutionary distance. (PAM1 equates
to one amino acid substitution per 100aa of
sequence.)

PamCtrl, PAM Yes

rje_pattern_

discovery

Can be used for batch motif discovery with
SLiMDisc and TEIRESIAS.

PatternDiscovery,
Pattern

Yes

rje_pydocs Extracts documentation and generates a
table of method links for python modules.

PyDoc,
PyModule,
PyClass,
PyMethod

Yes

rje_seq Contains Classes and methods for sets of
DNA and protein sequences. (Currently only
protein sequences supported.)

SeqList,
Sequence,
DisMatrix

Yes*

rje_tree Reads in, edits and outputs phylogenetic
trees. Executes duplication and subfamily
determination.

Tree, Node,
Branch

Yes*

rje_uniprot Contains methods for parsing UniProt info.

Indexing performed by rje_dbase.py.

UniProt Yes

14 PEAT

Rich Edwards 27 July 2007

3.2.3: Accessory Modules

Modules not for standalone running but with classes and methods used by main programs.

Module Description Classes Exec

rje General module containing Classes used by
all my scripts plus a number of miscellaneous
methods.

RJE_Object_Shell
, RJE_Object,
Info, Out, Log

No

rje_aaprop This module Takes an amino acid property

matrix file and reads into an AAPropMatrix
object. Converts in an all by all property

difference matrix. By default, gaps and Xs will
be given null properties (None) unless part of
input file.

AAPropMatrix No

rje_ancseq This module contains the objects and
methods for ancestral sequence prediction.
Currently, only GASP (Edwards & Shields

2004) is implemented. Other methods may
be incorporated in the future.

Gasp, GaspNode No

rje_conseq Contains objects for calculating conservation

stats used in BADASP.

SeqStat No

rje_dismatrix Contains Classes and methods for Distance
Matrix

DisMatrix No

rje_haq Performs actual HAQ (SAQ and PAQ)
algorithms.

HAQ No

rje_menu Contains methods for standard menu
operations.

- No

rje_motif This module handles functions associated

with Motif class along with reformatting
motifs and storing variants etc.

Motif No

rje_motif_cons Contains methods for motif conservation

scoring

- No

rje_sequence Contains Classes and methods for individual
sequences

Sequence No

rje_specificity Contains objects for calculating specificity
stats used in BADASP.

FuncSpec No

rje_tree_group Contains all the Grouping Methods for

rje_tree.py

- No

rje_xml Crude XML parsing module XML No

Protein Evolution Analysis Toolkit 15

Rich Edwards 27 July 2007

3.2.4: Miscellaneous Additional Accessory Applications

These guys are not directly important for the main applications but may be of some use to

someone, somewhere. See documentation in the modules themselves or e-mail me for more
information.

Module Description Classes Exec

file_monster File and directory information extraction and
summary module.

FileScout Yes

peptide_dismat

rix

Generates distance matrices for short
peptides.

PepDis Yes

peptide_stats Generates table of statistics about input
peptides (charge balance etc.)

PepStats Yes

pic_html Generates a set of linked websites from
pictures in correct directory structure.

picHTML Yes

rem_parser Parses details of removed sequences from
log files.

RemParser Yes

rje_hmm Performs HMM searches with HMMer HMMRun,
HMMSearch,
HMMHit

Yes

rje_markov Messes about with markov chains in proteins,
making frequency tables etc.

Markov Yes

rje_seqgen Random sequence generation and peptide
scrambling.

SeqGen Yes

rje_scansite Converts multiple scansite output files into a
single table.

Scansite Yes

rje_tm Compiles TMHMM and SignalP results. TM Yes

seqforker Splits a large dataset up, forks out processes
and then sticks it back together. Designed for
use with (almost) any other application.

SeqForker Yes

16 PEAT

Rich Edwards 27 July 2007

3.3: Additional Files Required
The following files are required for some programs in the package to run correctly. All these
files should have been provided in the download zip file. These files may all be replaced with

other files in the correct format. Programs will look first in the directory from which the
program is called, and then in the directory specified by path=PATH, which is the directory

containing the Python scripts by default.

3.3.1: Amino Acid Property Matrix

By default, a property matrix based on that used by Livingstone and Barton is used

(aaprop.txt)(Livingstone & Barton 1993). This is file can be replaced by one in the same

format using the aaprop=FILE option. This file may have different (numbers of) properties

than those used in the default file:

Based on Property Matrix of Livingstone and Barton.

PROPERTY I L V C A G M F Y W H K R E Q D N S T P

Hydrophobic 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0

Polar 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Small 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Proline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Positive 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

Negative 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Charged 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0

Tiny 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Aliphatic 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Aromatic 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

This property matrix is then converted by BADASP into a property difference matrix using
the rje_aaprop.py module.

Currently gaps are handled using a special parameter aagapdif=X, which assigns all

comparisons between a gap and another residue (including another gap) a value of X. In

future, gaps may be incorporated into input property matrices if desired. Please contact the
author to have this implemented sooner. By default this difference is 5, which is half of the

default number of properties. This parameter is independent of property number, however,
and can be given a value in excess of the number of properties if it is desirable to make
gapped regions extremely different from ungapped ones.

Wildcard residues such as X are handled using a special parameter aanulldif=X, which

assigns all a set difference for each property. By default this is 0.5, so a wildcard/unknown

residue will share half its properties with any other residue. A value of 0 will give no
property differences, while 1 will assume all properties are different.

3.3.2: PAM Matrix File

The PAM matrix contains amino acid substitution probabilities. A basic PAM matrix (Jones et

al. 1992) is available in the file jones.pam (and is known as JTT, I believe). The important

part of this file is the top section, which has the single letter amino acid codes on the first
line, followed by the PAM1 matrix, where each subsequent line consists of an amino acid
code and the probability of that aa being substituted by each other aa, in the order given in

the first line:

A R N D C Q E G H I L K M F P S T W Y V

Ala 0.98754 0.00030 0.00023 0.00042 0.00011 0.00023 0.00065 …

Arg 0.00044 0.98974 0.00019 0.00008 0.00022 0.00125 0.00018 …

Asn 0.00042 0.00023 0.98720 0.00269 0.00007 0.00035 0.00036 …

Protein Evolution Analysis Toolkit 17

Rich Edwards 27 July 2007

…

Val 0.00226 0.00009 0.00007 0.00016 0.00012 0.00008 0.00027 …

Note that the amino acids must be in the same order in both columns and rows. See
http://bioinformatics.ucd.ie/shields/software/gasp/gasp_pam.htm for more details.

3.3.3: Using an unscaled matrix

An unscaled matrix, such as the WAG matrix provided by the Goldman group at

www.ebi.ac.uk/goldman/WAG can now also be used by rje_pam and converted into a
PAM1 matrix. To do this, use the altpam=FILE option. By default, amino acid frequencies

will be read from that file. If the seqin=FILE command is also used, the amino acid

frequencies will be calculated from that sequence file instead. The pamout=FILE option

specifies the name for the rescaled PAM matrix output. (By default this file is named after

the input file with a *.pam extension.)

3.4: External Components of PEAT Programs
In addition to the python modules listed above, some of the programs make use of the
following published programs. These are freely available for downloading and installing. It is

recommended that the user downloads and installs these programs according to the
instructions given on the appropriate website.

ALIGN: This is part of the Fasta package (Pearson 1994; 2000) and can be downloaded

from the University of Virginia: http://fasta.bioch.virginia.edu/. Make sure that align is part
of the download. For some reason it seems to have been dropped from later packages. You
may need to install an earlier package first (e.g. 2.1) and then a later package.

BLAST: BLAST (Altschul et al. 1990) is freely available for download from NCBI at:
http://www.ncbi.nlm.nih.gov/blast/download.shtml.

CLUSTALW: ClustalW (Higgins & Sharp 1988; Thompson et al. 1994) is an old stalwart for

bioinformatics and is freely available from EMBL: ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/.
Note that CLUSTALW is used as a backup for MUSCLE (below) and to draw trees. See

Replacing Components with Other Programs for details of how to incorporate other
tree-drawing packages.

MUSCLE: MUSCLE (Edgar 2004) is a newer multiple alignment program available from

http://www.drive5.com/muscle.

PHYLIP: Details coming soon!

TEIRESIAS: See SLiMDisc documentation for details.

It is recommended that paths to these programs are placed into an INI file (see 3.1.4:
Setting up the INI File).

3.5: Replacing Components with Other Programs
The most important functions performed by the external programs alignment and tree-
drawing. This section lists some ways to incorporate alternative programs for these
functions into PEAT programs. I am always interested to add more functionality, so if there
is a program you would like to use instead of those listed, then please contact me and I may
be able to add them in a more controlled fashion than below.

18 PEAT

Rich Edwards 27 July 2007

3.5.1: Alignment programs

By default, MUSCLE (Edgar 2004) is used for alignments as I have found this to be both fast

and accurate. There can be problems with memory allocation for larger datasets and so and
ClustalW (Higgins & Sharp 1988; Thompson et al. 1994) is used for large datasets above a

certain total number of residues (as determined by the cwcut=X parameter). Either of these

programs can be replaced, however, by another program that uses the same command-line
format call the programs.

For MUSCLE, the system call is:

muscle -in INFILE -out OUTFILE, where INFILE and OUTFILE are both fasta

format.

The path to MUSCLE can be changed to redirect to another program using the

muscle=PATH option.

For ClustalW, the system call is:

clustalw INFILE, where INFILE is in fasta format (*.fas) and the output file (*.aln) is

in ClustalW align format.

The path to ClustalW can be changed to redirect to another program using the

clustalw=PATH option.

3.5.2: Tree-drawing programs

The default for PEAT programs is to use the Neighbour-joining method implemented in
ClustalW for drawing trees. Although this is not the most accurate phylogeny construction
algorithm around, it is fast and efficient and reasonable for trees of closely-related
sequences with high bootstrap support, such as those HAQESAC was designed to build and
work with. Again, this program can be replaced with another using the maketree=PATH

option. The system call used is:

clustalw -infile=INFILE -bootstrap=X -seed=X [-kimura] for UNIX, or

clustalw INFILE -bootstrap=X -seed=X [-kimura] for Windows, where INFILE

is in fasta format (*.fas) and the output file (*.phb) is in bootstrapped Phylip format (I

think).

It should work to have a program output a Newick Standard Format tree as *.nsf but I have

not tested that.

Phylip tree-drawing is also implemented. See module documentation for details. #!#
Describe more! #!#

3.5.3: Wrapper scripts

If the chosen program does not accept the same input/output commands/formats then a

wrapper script should be written. It is suggested to use Perl or Python for this. Although I
cannot promise help in every suggestion, you are welcome to e-mail me for help with this
and I will see what I can do.

3.5.4: Incorporating Other Programs into the Python Code

If you are feeling brave, you can actually edit the Python modules themselves. The key

methods for this are rje_seq.muscleAln(), rje_seq.clustalAln() and rje_tree.makeTree().

Obviously, I cannot promise to give technical support for any changes that are made but, if
you know what you are doing, you should be OK and I will help where I can.

Protein Evolution Analysis Toolkit 19

Rich Edwards 27 July 2007

3.6: Log Files
Every program generates a log file when it is run. By default, this file will be named after the

calling program (e.g. gasp.py will produce a log called gasp.log) but this can be changed

with the log=FILE option. Logs will be appended unless the newlog (or newlog=T)

option is used.

The log file records information that may help subsequent interpretation of results or
identify problems. Probably it’s most useful content is any error messages generated, which
are marked by a #ERR line header. Other information is also recorded along with the

runtime (HH:MM:SS since the program started).

For help interpreting log files, please check the relevant software manual or contact me if
the information is missing. (Hopefully, the log content is mostly self-explanatory but I shall

add any explanations I have to send people to the relevant manual’s appendix.)

3.7: Troubleshooting
Currently, this is a small section as I have not had enough feedback to have FAQs, or
anything like that. Here is a list of things that I think MAY cause problems to the unwary:

• Giving file names with spaces without enclosing in double quotes “”. (Only the first
word will be taken as the filename.) It is not recommended to have spaces in
filenames as some programs (and accessory programs) may go wrong if you do.

• Including spaces in paths to programs etc. without double quotes “”. Likewise, a lack
of spaces altogether is favourable.

• Incorrect formatting of input files. Check instructions in relevant manual. If things
are still not working, check that the line breaks are \n and not \r or some other odd
format.

• I’m not sure when but there is a possibility of problems if running in Windows

without the win32=T option.

• Using out-of-date modules. Sometimes changes to a program will actually be made

in one of the modules they import: if upgrading, upgrade all modules and not just
the program being called.

20 PEAT

Rich Edwards 27 July 2007

3.8: References
Altschul SF et al. (1990). Basic local alignment search tool. J Mol Biol 215: 403-10.
Davey NE, Shields DC and Edwards RJ (2006). SLiMDisc: short, linear motif discovery,

correcting for common evolutionary descent. Nucleic Acids Res. 34: 3546-54.
Edgar RC (2004). MUSCLE: a multiple sequence alignment method with reduced time and

space complexity. BMC Bioinformatics 5: 113.

Edwards RJ and Shields DC (2004). GASP: Gapped Ancestral Sequence Prediction for
proteins. BMC Bioinformatics 5: 123.

Edwards RJ and Shields DC (2005). BADASP: predicting functional specificity in protein
families using ancestral sequences. Bioinformatics 13: 13.

Felsenstein J (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the
author. Department of Genome Sciences, University of Washington, Seattle.

Higgins DG and Sharp PM (1988). CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer. Gene 73: 237-44.

Jones DT, Taylor WR and Thornton JM (1992). The rapid generation of mutation data
matrices from protein sequences. Comput Appl Biosci 8: 275-82.

Livingstone CD and Barton GJ (1993). Protein sequence alignments: a strategy for the

hierarchical analysis of residue conservation. Comput Appl Biosci 9: 745-56.
Pearson WR (1994). Using the FASTA program to search protein and DNA sequence

databases. Methods Mol Biol 24: 307-31.

Pearson WR (2000). Flexible sequence similarity searching with the FASTA3 program
package. Methods Mol Biol 132: 185-219.

Puntervoll P et al. (2003). ELM server: A new resource for investigating short functional sites

in modular eukaryotic proteins. Nucleic Acids Res 31: 3625-30.
Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-80.

