

Rich Edwards 11 February 2010

SLiMFinder: Short Linear Motif Finder
Richard J. Edwards, Norman E. Davey & Denis C. Shields © 2007-2010.

Contents

1. Introduction..4
1.1. Version..4
1.2. Using this Manual ..4
1.3. What is SLiMFinder? ...4
1.4. Getting Help..5

1.4.1. Something Missing? .. 5
1.5. Citing SLiMFinder ..5

2. Fundamentals ...7
2.1. Running SLiMFinder..7

2.1.1. The Basics... 7
2.1.2. Options .. 7

2.2. Input ..7
2.2.1. Optional Input I: Amino acid frequency files... 7
2.2.2. Optional Input II: Specific Motifs of Interest ... 7
2.2.3. Optional Input III: Protein Clusters ... 8
2.2.4. Optional Input IV: Query Sequences ... 8
2.2.5. Optional Input V: Protein Alignments ... 8

2.3. Output ...9
2.3.1. Main SLiMFinder Results Table... 9
2.3.2. Sequence relationship output .. 9
2.3.3. SLiMDisc Output.. 9
2.3.4. TEIRESIAS Output .. 9
2.3.5. Extra Dataset-specific Output .. 9

2.4. Commandline Options ..10
2.5. Rerunning SLiMFinder (and Pickling) ...13

2.5.1. Pickle naming conventions .. 13
2.5.2. Masked dataset pickles ... 13

2.6. Secondary SLiMFinder Functions..13
2.6.1. Simple Identification of Sequences containing Motifs .. 13
2.6.2. Randomising Batch Datasets .. 13

3. SLiMFinder Methods & Definitions...15
3.1. SLiMFinder Program Overview ..15
3.2. Unrelated Protein Clusters (UPC) ..16
3.3. SLiM Definitions...17

3.3.1. SLiM Anatomy ... 17
3.3.2. SLiMs and SLiMBuild Dimers .. 18
3.3.3. Information Content (IC) .. 18
3.3.4. Motif Occurrences and Support ... 18

4. SLiMBuild Motif Construction ..19
4.1. Input Masking...19

4.1.1. Disorder masking... 19
4.1.2. UniProt Features.. 19
4.1.3. Low Complexity Masking ... 19
4.1.4. N-terminal Methionines.. 19
4.1.5. Masking by Case ... 19
4.1.6. Relative Conservation Masking ... 20
4.1.7. Masking pre-defined motifs.. 20

4.2. SLiM Construction...20

2 SLiMFinder

Rich Edwards 11 February 2010

4.2.1. SLiMBuild dimer construction .. 23
4.2.2. SLiMBuild motif extension ... 23
4.2.3. SLiMBuild ambiguity .. 23
4.2.4. Final SLiM Support .. 24

4.3. SLiMBuild versus TEIRESIAS...24

5. SLiMChance Motif Probability Methods..25
5.1. Amino Acid Frequencies...25
5.2. SLiMChance motif probability estimation...25

5.2.1. SLiMChance probabilities per UPC ... 26
5.2.2. SLiMChance probabilities per dataset ... 27
5.2.3. SLiMChance significance values ... 27

5.3. Increasing significance with restricted searches...28
5.3.1. Query sequences and focus groups .. 28
5.3.2. MustHave amino acid restrictions.. 28

6. SLiMFinder Output Explained ..29
6.1. Main SLiMFinder Output (slimfinder.csv) ...29

6.1.1. Overwriting, appending and backing up results ... 29
6.1.2. Main Output Fields... 29

6.2. Sequence Relationships (*.upc, *.self.blast, *.dis.txt, *.phydis.txt)29
6.2.1. UPC Definitions ... 29
6.2.2. Distance Matrices .. 30

6.3. Dataset rank files (*.rank)..31
6.4. Motif Clouds (*.cloud.txt) ..31
6.5. Motif Occurrence Tables (*.occ.csv, *.dat.rank & *.out) ..31
6.6. Sequence files (*.motifaln.fas, *.maskaln.fas, *.mapping.fas, *.masked.fas, *.motifs)31
6.7. CompariMotif Comparisons (*.compare.tdt) ...32
6.8. XGMML Cytoscape Files (*.xgmml, *.cloud.xgmml)...32

7. SLiM Statistics and Filtering ..34
7.1. Additional SLiM Calculations (slimcalc) ...34

7.1.1. Surface Accessibility [SA] .. 34
7.1.2. Hydropathy [Hyd] ... 34
7.1.3. Disorder [IUP & Fold]... 34
7.1.4. Complexity [Comp] .. 34
7.1.5. SLiM Conservation [Cons] ... 34
7.1.6. Extending Calculations to flanking regions .. 35

7.2. SLiM Conservation Calculations..35
7.2.1. Absolute Conservation [abs].. 35
7.2.2. Positional Scoring [pos] ... 35
7.2.3. AA Property Scoring [prop] .. 37
7.2.4. Relative Conservation Scoring [rel].. 37
7.2.5. Combined Scoring [all]... 37
7.2.6. Motif ambiguity .. 37
7.2.7. Positional Weighting by Information Content ... 37
7.2.8. Homology Weighting.. 37
7.2.9. Gap Treatment .. 38
7.2.10. Taxonomic subgroupings... 38

7.3. Protein Alignments for SLiMFinder ...38
7.3.1. Using GOPHER to make orthologue alignments ... 38

7.4. Filtering output using SLiM Calculations..39
7.5. SLiM calculation/filtering options ..39

8. The SLiMFinder Webserver..41

9. Appendices..44
9.1. Troubleshooting & FAQ ..44
9.2. QuickStart Guide ...44
9.3. References..44

Short Linear Motif Finder 3

Rich Edwards 11 February 2010

Figures

Figure 3.1. SLiMFinder Overview. ...15
Figure 3.2. Generation of UPC from BLAST results. ...16
Figure 3.3. Anatomy of a SLiM...17
Figure 4.1. SLiMBuild construction of motifs. ...21
Figure 4.2. SLiMBuild Ambiguity. ..22
Figure 6.1. Cytoscape visualisation of SLiMFinder XGMML output for LIG_CYCLIN_1..............32
Figure 6.2. Cytoscape visualisation of XGMML output for LIG_PCNA results.............................33
Figure 7.1. Absolute Conservation..36
Figure 7.2. Position-speciffc Conservation. ...36
Figure 8.1. SLiMFinder webserver front page. ...41
Figure 8.2. SLiMFinder webserver options pages. ..42
Figure 8.3. SLiMFinder webserver main results page...43

Tables

Table 2.1. List of optional extra dataset-specific SLiMFinder outputs. ...10
Table 2.2. SLiMFinder Commandline Options..10
Table 4.1. Major advantages of SLiMFinder over TEIRESIAS for SLiM Discovery.......................24
Table 5.1. Suggested use of Amino Acid Frequency options. ...25
Table 6.1. Fields for main SLiMFinder Output..30
Table 7.1. SLiM calculation/filtering options. ...40

4 SLiMFinder

Rich Edwards 11 February 2010

1. Introduction

This manual gives an overview of SLiMFinder as implemented in the slimfinder.py module. Because
there are many options, this manual will probably not be fully comprehensive but aims to cover the
basics and the most useful of the more advanced stuff. If anything is missing or needs clarification,
please contact me. The fundamentals are covered in Chapter 2, Fundamentals, including input and
output details. Later sections give more details on how the methods work and statistics are generated.

General details about Command-line options can be found in the PEAT Appendices document
included with this download.

SLiMFinder Version 4.0 is considerably more integrated with other tools (e.g. SLiMSearch,
CompariMotif), which are now all packaged together as SLiMSuite. Missing details of command-line
options can sometimes be found in these other manuals. Over the coming months, I hope to
consolidate the help for all these applications into a single SLiMSuite manual. In the meantime, do
contact me if you need more assistance.

Like the software itself, this manual is a ‘work in progress’ to some degree. If the version you are now
reading does not make sense, then it may be worth checking the website to see if a more recent version

is available, as indicated by the Version section of the manual. You can also check the readme on the
website for up-to-date options etc. In particular, default values for options are subject to change and

should be checked in the readme.

Good luck.

Rich Edwards, 2010.

1.1. Version

This manual is designed to accompany SLiMFinder version 4.0.

The manual was last edited on 11 February 2010.

1.2. Using this Manual

As much as possible, I shall try to make a clear distinction between explanatory text (this) and text to
be typed at the command-prompt etc. Command prompt text will be written in Courier New to
make the distinction clearer. Program options, also called ‘command-line parameters’, will be
written in bold Courier New (and coloured red for fixed portions or dark red for user-

defined portions, such as file names etc.). Command-line examples will be given in (purple)
italicised Courier New. Optional parameters will (if I remember) be [in square brackets].

Names of files will be marked in normal text by (blue-grey) Times New Roman.

1.3. What is SLiMFinder?

Short linear motifs (SLiMs) in proteins are functional microdomains of fundamental importance in
many biological systems. SLiMs typically consist of a 3 to 10 amino acid stretch of the primary protein
sequence, of which as few as two sites may be important for activity, making identification of novel
SLiMs extremely difficult. In particular, it can be very difficult to distinguish a randomly recurring
"motif" from a truly over-represented one. Incorporating ambiguous amino acid positions and/or
variable-length wildcard spacers between defined residues further complicates the matter.

SLiMFinder is an integrated SLiM discovery program building on the principles of the SLiMDisc
software for accounting for evolutionary relationships (Davey et al. 2006). SLiMFinder is comprised
of two algorithms:

1. SLiMBuild identifies convergently evolved, short motifs in a dataset. Motifs with fixed amino acid
positions are identified and then combined to incorporate amino acid ambiguity and variable-length
wildcard spacers. Unlike programs such as TEIRESIAS (Rigoutsos & Floratos 1998), which return all
shared patterns, SLiMBuild accelerates the process and reduces returned motifs by explicitly
screening out motifs that do not occur in enough unrelated proteins. For this, SLiMBuild uses the
"Unrelated Proteins" (UP) algorithm of SLiMDisc in which BLAST is used to identify pairwise
relationships. Proteins are then clustered according to these relationships into "Unrelated Protein
Clusters" (UPCs), which are defined such that no protein in a UPC has a BLAST-detectable

Short Linear Motif Finder 5

Rich Edwards 11 February 2010

relationship with a protein in another UPC. If desired, SLiMBuild can be used as a replacement for
TEIRESIAS in other software (use teiresias=T slimchance=F to emulate TEIRESIAS output).

2. SLiMChance estimates the probability of these motifs arising by chance, correcting for the size
and composition of the dataset, and assigns a significance value to each motif. Motif occurrence
probabilities are calculated independently for each UPC, adjusted the size of a UPC using the
Minimum Spanning Tree algorithm from SLiMDisc. These individual occurrence probabilities are
then converted into the total probability of seeing the observed motifs the observed number of
(unrelated) times. These probabilities assume that the motif is known before the search. In reality,
only over-represented motifs from the dataset are looked at, so these probabilities must be adjusted
for the total number of motifs in the dataset. SLiMChance calculates the size of the “motif space”
searched and corrects the significance accordingly. The returned corrected probability is an estimate
of the probability of seeing ANY motif with that significance (or greater) from the dataset.

Where significant motifs are returned, SLiMFinder will group them into Motif "Clouds", which consist
of physically overlapping motifs (2+ non-wildcard positions are the same in the same sequence). This
provides an easy indication of which motifs may actually be variants of a larger SLiM and should
therefore be considered together. Where pre-known motifs are also of interest, these can be given with
the slimcheck=MOTIFS option and will be added to the output.

Additional Motif Occurrence Statistics, such as motif conservation, are handled by the rje_slimlist and

rje_slimcalc modules. Please see the documentation for these modules for a full list of commandline
options. Note that occfilter=LIST does affect the motifs returned by SLiMBuild and thus the

TEIRESIAS output (as does min. IC and min. Support) but the overall Motif slimfilter=LIST only

affects SLiMFinder output following SLiMChance calculations.

1.4. Getting Help

Much of the information here is also contained in the documentation of the Python modules
themselves. A full list of command-line parameters can be printed to screen using the help option,

with short descriptions for each one:

python slimfinder.py help

General details about Command-line options can be found in the PEAT Appendices document
included with this download. Details of command-line options specific to Slim Pickings can be found

in the distributed readme.txt and readme.html files.

If still stuck, then please e-mail me (r.edwards@soton.ac.uk) whatever question you have. If it is

the results of an error message, then please send me that and/or the log file (see 2.3) too.

1.4.1. Something Missing?

As much as possible, the important parts of SLiMFinder are described in detail in this manual. If
something is not covered, it is generally not very important and/or still under development, and can
therefore be safely ignored. If, however, curiosity gets the better of you, and/or you think that
something important is missing (or badly explained), please contact me.

1.5. Citing SLiMFinder

Please cite the main SLiMFinder publication (Edwards et al. 2007):

� Edwards RJ, Davey NE and Shields DC (2007). SLiMFinder: A Probabilistic Method for Identifying
Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS ONE, 2, e967.

When using advanced “SigV” and/or “SigPrime” statistics, please cite:

� Davey NE, Edwards RJ and Shields DC (2010). Estimation and efficient computation of the true
probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC
Bioinformatics 11: 14.

When using RLC conservation masking (4.1.6), please cite the RLC paper:

� Davey NE, Shields DC and Edwards RJ (2009). Masking residues using context-specific
evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 25(4):
443-50.

6 SLiMFinder

Rich Edwards 11 February 2010

When using alignments generated using GOPHER (Edwards 2006), please cite the SLiMDisc
Webserver paper (Davey et al. 2007). Disorder predictions should cite IUPRED (Dosztanyi et al.
2005).

Short Linear Motif Finder 7

Rich Edwards 11 February 2010

2. Fundamentals

2.1. Running SLiMFinder

2.1.1. The Basics

If you have python installed on your system, you should be able to run SLiMFinder directly from the
command line in the form:

python slimfinder.py

By default, SLiMFinder will run on all *.dat and *.fas files in the run directory. To run on a single file,
use the seqin=FILE option. For the example provided in the distribution:

python slimfinder.py seqin=slim_eg.fas

A SLiMFinder webserver is also available at http://bioware.ucd.ie. See chapter 8 for details.

2.1.2. Options

Command-line options are suggested in the following sections. General details about Command-line

options can be found in the PEAT Appendices document included with this download. Details of

command-line options specific to Slim Pickings can be found in the distributed readme.txt and

readme.html files. These may be given after the run command, as above, or loaded from one or more

*.ini files (see PEAT Appendices for details).

2.2. Input

Basic input for SLiMFinder is one or more sequence files in Fasta or UniProt format. This input will be

masked according to the program’s settings. See Chapter 4 for details. Sequence names may be altered

by the program for compatibility (using the gnspacc=T option of rje_seq.py (see RJE_SEQ Manual
for details).

2.2.1. Optional Input I: Amino acid frequency files

SLiMChance can optionally take external amino acid frequency files for its probability calculations,
using the aafreq=FILE option. This can either be a fasta format sequence file, or a plain text file

containing amino acid frequencies in two columns, with the headings “AA” and “FREQ”, e.g.:

AA FREQ

A 0.055854

C 0.020012

…

Y 0.026583

2.2.2. Optional Input II: Specific Motifs of Interest

SLiMFinder has a slimcheck=FILE option to search for specific motifs during SLiMFinder runs,

regardless of their significance. This should be a file with a format recognised by SLiMSearch
(Edwards 2007), which is a replacement for PRESTO (Edwards 2006) (see PRESTO documentation
for details), which in its simplest form is a plain list of motif patterns. If there are not variable-length
wildcards ({m,n}) then FILE can be replaced with a comma-separated list of motifs of interest. The

*.motifs file produced if extras=T (see below) is in a compatible format and can be used directly.

SLiMCheck motifs are added to the end of the main results file (see 2.3.1 and 6.1) but are not given a
rank. For a more detailed analysis of sequences with a dataset of known motifs, please use
SLiMSearch, which has many of the same input and processing options as SLiMFinder (Edwards
2007).

8 SLiMFinder

Rich Edwards 11 February 2010

2.2.3. Optional Input III: Protein Clusters

SLiMFinder uses BLAST (Altschul et al. 1990) and GABLAM (Edwards & Davey 2006) to cluster

related proteins into “Unrelated Protein Clusters” (UPCs) as described in 3.3.3. UPCs are treated as
units such that multiple SLiM occurrences within a UPC are treated as a single occurrence. The UPCs

generated by SLiMFinder are output into a summary file (see 2.3.2). If, for whatever reason, the user
wishes to define their own UPCs, this file can be replaced with one in the same format. This file should
be in one of the paths indicated by the resdir=PATH or buildpath=PATH options.

This might be particularly useful in cases where the homology detection by BLAST is wrong. (Either
insufficiently sensitive to weak relationships or confused by low complexity regions etc. By default the
BLAST complexity filter is on but this can be toggled with blastf=T/F. BLAST sensitivity can be

altered using blaste=X to adjust the e-value threshold. (1e-4 by default.))

2.2.4. Optional Input IV: Query Sequences

SLiMFinder can be limited to return only those motifs in a given sequence or set of sequences. This is
set by query=LIST, where LIST is a comma-separated list of protein names (just the first word) or

ID/accession numbers (for standard input formats). (e.g. query=P04049,P30307) This can be very
powerful in larger datasets as it will increase the significance of returned motifs based on how likely

they are to occur in the query sequence. (See 5.3 for details.)

This method has been further extended to allow multiple groups and definition options, using the
focus=FILE option. This file should be in plain text format, consisting of a number of focus group

entries:

#GroupName:Type

Entry1

…

EntryN

//

Each GroupName must be unique and represents a single Focus group. (The query=LIST option

actually generates a “Query” focus group.) The Type refers to an rje_seq filter type
(Seq/Spec/Desc/DB/Acc). Groups are actually made using the goodTYPE=LIST filter of RJE_SEQ

to pull out the sequences of interest – see the RJE_SEQ Manual for details. Entry 1 to N then list the
N entries to be added to this group. Note that each entry could pull out multiple sequences. E.g. to put
all Human sequences from your dataset into a Group “Homo_sapiens” (assuming a properly
formatted file as input, which would have “HUMAN” in each human sequence name), you could use:

#Homo_sapiens:Seq

HUMAN

//

Most commonly, Type would be “Acc” and each Entry would be an Accession Number of an input
protein. Where multiple groups are given, the min. number of groups that must contain a returned
motif is set with focusocc=X. If X is 0 (the default) then a motif must be present in all groups.

2.2.5. Optional Input V: Protein Alignments

To use some of the advanced SLiMFinder functions, such conservation calculations and alignment
outputs, SLiMFinder must be given the location and naming convention for protein alignments. These
can also be generated by SLiMFinder using GOPHER (Edwards 2006) and a sequence database.

Details are given in 7.3.

Short Linear Motif Finder 9

Rich Edwards 11 February 2010

2.3. Output

SLiMFinder has multiple outputs, many of which are optional. An overview of the possible outputs is
given here. Unless otherwise specified, only motifs meeting the probcut=X threshold will be output.

It is also possible to restrict output to the top X motifs, using topranks=X. Note that both these

options apply to a dataset, so to return the top X motifs regardless of their probability, set probcut
very high (e.g. probcut=1.0). With the exception of the main results table, all (dataset-specific)
output is created in the directory specified by resdir=PATH.

NB. To output this file into a directory other than the run directory, use the full path in the name (e.g.
resfile=SLiMFinder/slimfinder.csv).

2.3.1. Main SLiMFinder Results Table

The main output of SLiMFinder is a single delimited text file containing a list of significant motifs and

dataset statistics for all datasets analysed. By default, this is a comma-separated *.csv file specified by

resfile=FILE [default slimfinder.csv – set resfile=None for no output]. Name this file *.csv for

comma separated output and *.tdt for tab delimited output. All other extensions will result in space-

delimited output. If no extension (*.*) is found then *.csv will be appended. (E.g. resfile=eg will

output to eg.csv.)

2.3.2. Sequence relationship output

Sequence relationships are defined using BLAST (Altschul et al. 1990) and GABLAM (Edwards &

Davey 2006). A *.self.blast file is created during this process, containing the actual BLAST
alignments. This is deleted unless extras=T. This file is converted into a GABLAM distance matrix,

which is output into a tab-delimited distance matrix file *.dis.tdt. If extras=T then a PHYLIP format

distance matrix is also output as *.phydis.txt, which can be used to draw trees with PHYLIP
(Felsenstein 2005) (using RJE_TREE (Edwards 2006) if desired). This matrix in turn is used to

define Unrelated Protein Clusters (UPCs; see 3.3.3), which are output to a relationship summary file

*.upc. This file lists each cluster, the number of sequences it contains, the MST-corrected size of the

UPC (see 3.3.3) and the short names of the sequences in the UPC. Note that when this file exists, it
will be read for a dataset instead of regenerating with BLAST (unless force=T). This means that it is

possible to create custom UPC groupings if desired by hacking this file (see 6.2.1).

2.3.3. SLiMDisc Output

If slimdisc=T then SLiMFinder will attempt to emulate SLiMDisc (Davey et al. 2006) output,

producing *.rank and *.dat.rank files as well as a TEIRESIAS (Rigoutsos & Floratos 1998) format
output (below).

2.3.4. TEIRESIAS Output

If teiresias=T then SLiMFinder will output a *.masked.fas fasta file of the masked sequences and a

*.out file of all motifs exceeding the given minocc=X and minic=X thresholds in TEIRESIAS

(Rigoutsos & Floratos 1998) output format. This is an additional output. To cancel the normal output,

set slimchance=F and slimdisc=F. If slimdisc=F the *.masked.fas fasta file will simply be called

*.fasta (to emulate SLiMDisc).

2.3.5. Extra Dataset-specific Output

If extras=T then a number of additional data files are created in the directory specified by

resdir=PATH in addition to the files described above. These outputs are listed in Table 2.1 and

described in more detail in Chapter 0.

10 SLiMFinder

Rich Edwards 11 February 2010

Table 2.1. List of optional extra dataset-specific SLiMFinder outputs.

File Description Requirements

*.rank Text file containing significant motifs and a reduced (tab-delimited)
data output from the main results file

None

*.cloud.txt Text file containing extra information on the significant motif “clouds”,
including the sequences containing motifs in each cloud and their
overlap in terms of sequence coverage.

1+ Significant SLiMs

*.occ.csv Comma-separated file listing the individual occurrences of these motifs
(and their stats)

1+ Significant SLiMs

*.motifaln.fas Alignment file of each significant motif across its occurrences in the
context of the parent sequences

*.maskaln.fas Same as *.motifaln.fas except that the parent sequences are masked

1+ Significant
SLiMs. GOPHER
and/or alignments
for orthologues

*.mapping.fas Fasta file containing sequences for each input sequence. These
sequences are present in threes for each input sequence:
1. The significant motifs found in that sequence, aligned to (2) and (3)
2. The full-length unmasked sequence
3. The full-length masked sequence

1+ Significant SLiMs

*.motifs Plain text file in PRESTO-compatible format. This file can be used
directly with the slimcheck=FILE option to search for specific motifs
during SLiMFinder runs. (Note that this file also includes any motifs
given by the slimcheck=FILE option for this run!)

1+ Significant SLiMs
and/or slimcheck=
FILE motifs

*.compare.tdt Results from an all-by-all CompariMotif (Edwards et al. 2008) analysis
of significant and slimcheck=FILE motifs to identify similar patterns.

1+ Significant SLiMs
and/or slimcheck=
FILE motifs

*.xgmml This outputs a file in XGMML format that can uploaded into
Cytoscape (Shannon et al. 2003) for visualisation. All returned SLiMs
and all proteins are present as nodes. CompariMotif matches between
SLiMs, UPC relationships between proteins, and occurrences of SLiMs
in proteins are all marked as edges.

None. (Proteins only
if no significant
SLiMs.)

*cloud.xgmml This is the same as the basic *.xgmml file, except that returned SLiMs
are compressed into clouds, represented by their most significant
member.

1+ Significant SLiMs

2.4. Commandline Options

Table 2.2 lists the commandline options for SLiMFinder (See also 3.1 and Figure 3.1). Please see also

the PEAT Appendices document for additional general commandline options and the RJE_SEQ

Manual for further input data options. The documentation (help) for rje_slimcalc.py also gives more

details on options for additional SLiM statistic calculations and filtering (See Chapter 7). Beginners
will probably want to leave the default settings unchanged.

Table 2.2. SLiMFinder Commandline Options.

Option Description Default

 Basic Input/Output Options

seqin=FILE Sequence file to search [None]

batch=LIST List of files to search, wildcards allowed. (Over-ruled by
seqin=FILE)

[*.dat,*.fas]

maxseq=X Maximum number of sequences to process [500]

maxupc=X Maximum UPC size of dataset to process [0]

walltime=X Time in hours before program will abort search and exit [1.0]

resfile=FILE If FILE is given, will also produce a table of results in resfile [slimfinder.csv]

resdir=PATH Redirect individual output files to specified directory [SLiMFinder/]

buildpath=PATH Alternative path to look for existing intermediate files [SLiMFinder/]

Short Linear Motif Finder 11

Rich Edwards 11 February 2010

Option Description Default

force=T/F Force re-running of BLAST, UPC generation and SLiMBuild [False]

pickup=T/F Pick-up aborted batch run by identifying last dataset in resfile. [False]

 SLiMBuild Options I: Evolutionary Filtering

efilter=T/F Whether to use evolutionary filtering [True]

blastf=T/F Use BLAST Complexity filter when determining relationships [True]

blaste=X BLAST e-value threshold for determining relationships [1e
-4

]

altdis=FILE Alternative all by all distance matrix for relationships [None]

gablamdis=FILE Alternative GABLAM results file (!!!Experimental feature!!!) [None]

homcut=X Max number of homologues to allow (to reduce large multi-
domain families)

[0]

 SLiMBuild Options II: Input Masking

masking=T/F Master control switch to turn off all masking if False [True]

consmask=T/F Mask residues based on relative conservation. [False]

dismask=T/F Whether to mask ordered regions (see rje_disorder for options) [False]

ftmask=T/F UniProt features to mask out [EM,DOMAIN,TRA
NSMEM]

imask=T/F UniProt features to inversely ("inclusively") mask (Seqs MUST
have 1+ features)

[]

compmask=X,Y Mask low complexity regions (same AA in X+ of Y consecutive
aas)

[5,8]

casemask=X Mask Upper or Lower case of input sequence (see 4.1.5) [None]

motifmask=X List (or file) of motifs to mask from input sequences []

metmask=T/F Masks the N-terminal M (can be useful if termini=T) [True]

aamask=LIST Masks list of AAs from all sequences (reduces alphabet) []

posmask=LIST Masks list of position-specific aas, where list = pos1:aas,pos2:aas [2:A]

 SLiMBuild Options III: Basic Motif Construction

termini=T/F Whether to add termini characters (^ & $) to search sequences [True]

minwild=X Min. no. of consecutive wildcard positions to allow [0]

maxwild=X Max. no. of consecutive wildcard positions to allow [2]

slimlen=X Maximum length of SLiMs to return (no. non-wildcard positions) [5]

minocc=X Minimum number of unrelated occurrences for returned SLiMs.
(Proportion of UP if < 1)

[0.05]

absmin=X Used if minocc<1 to define absolute min. UP occ [3]

alphahelix=T/F Special i, i+3/4, i+7 motif discovery. (!!!Experimental!!!) [False]

 SLiMBuild Options IV: Ambiguity

preamb=T/F Whether to search for ambiguous motifs during motif discovery [True]

ambocc=X Min. UP occurrence for subvariants of ambiguous motifs (minocc
if 0 or > minocc)

[0.05]

absminamb=X Used if ambocc<1 to define absolute min. UP occ [2]

equiv=LIST List (or file) of TEIRESIAS-style ambiguities to use [AGS,ILMVF,FYW,
FYH,KRH,DE,ST]

wildvar=T/F Whether to allow variable length wildcards [True]

combamb=T/F Whether to search for combined amino acid degeneracy and
variable wildcards

[False]

 SLiMBuild Options V: Advanced Motif Filtering

musthave=LIST Returned motifs must contain one or more of the AAs in LIST. []

query=X Return only SLiMs in the Query sequence X [None]

focus=FILE FILE containing focal groups for SLiM return [None]

focusocc=X Motif must appear in X+ focus groups (0 = all) [0]

12 SLiMFinder

Rich Edwards 11 February 2010

Option Description Default

 SLiMChance Options

slimchance=T/F Execute main SLiMFinder probability method and outputs [True]

probcut=X Probability cut-off for returned motifs [0.1]

maskfreq=T/F Whether to mask input before any analysis, or after frequency
calculations

[True]

aafreq=FILE Use FILE to replace individual sequence AAFreqs (FILE can be
sequences or aafreq)

[None]

aadimerfreq=FILE Use empirical dimer frequencies from FILE (fasta or *.aadimer.tdt)
(!!!Experimental!!!)

[None]

negatives=FILE Multiply raw probabilities by under-representation in FILE
(!!!Experimental!!!)

[None]

smearfreq=T/F Whether to "smear" AA frequencies across UPC rather than keep
separate AAFreqs

[False]

seqocc=T/F Whether to upweight for multiple occurrences in same sequence
(heuristic)

[False]

probscore=X Score to be used for probability cut-off and ranking
(Uncorrected/Sig)

[Sig]

 Output Options I: Output Data

clouds=X Identifies motif "clouds" which overlap at 2+ positions in X+
sequences (0=minocc)

[2]

runid=X Run ID for resfile (allows multiple runs on same data) [DATE:TIME]

logmask=T/F Whether to log the masking of individual sequences [True]

slimcheck=FILE Motif file (PRESTO formats) or list of patterns to add to resfile
output

[]

 Output Options II: Output Formats

teiresias=T/F Replace TEIRESIAS only, making *.out and *.mask.fas files [False]

slimdisc=T/F Output in SLiMDisc format instead of SLiMFinder format (*.rank &
*.dat.rank)

[False]

extras=T/F Whether to generate additional output files (alignments etc.) [True]

targz=T/F Whether to tar and zip dataset result files (UNIX only) [False]

savespace=X Delete "unneccessary" files following run (best used with targz):
- 0 = Delete no files
- 1 = Delete all bar *.upc and *.pickle files
- 2 = Delete all dataset-specific files including *.upc and *.pickle
(not *.tar.gz)

[0]

 Output Options III: Additional Motif Filtering

topranks=X Will only output top X motifs meeting probcut [0]

minic=X Minimum information content for returned motifs (See
 3.3.3Information content)

[2.1]

slimcalc=LIST List of additional statistics to calculate for occurrences, out of
Cons,SA,Hyd,Fold,IUP,Chg,Comp. See the documentation (help)
for rje_slimcalc.py and 7Additional Statistics and Filtering for more
details on options for additional SLiM statistic calculations and
filtering.

[]

 Additional Functions

motifseq=LIST Outputs fasta files for a list of X:Y, where X is the pattern and Y is
the output file

[]

slimbuild=T/F Whether to build motifs with SLiMBuild. (For combination with
motifseq only.)

[True]

randomise=T/F Randomise UPC within batch files and output new datasets [False]

randir=PATH Output path for creation of randomised datasets [Random/]

randbase=X Base for random dataset name [rand]

Short Linear Motif Finder 13

Rich Edwards 11 February 2010

2.5. Rerunning SLiMFinder (and Pickling)

The longest part of SLiMFinder is generally the SLiMBuild portion, which assembles the actual motifs.

In order to accelerate future analyses, SLiMFinder (a) outputs a *.*.pickle file following SLiMBuild if

none exists, or (b) reads in an existing *.*.pickle file in place of regenerating motifs using SLiMBuild.
(This uses Python’s “pickle” method for saving a mid-run version of the program and all its objects.)
This file could be in one of the paths indicated by the resdir=PATH or buildpath=PATH options. (If

created in (a), it will always be output into the resdir=PATH directory.) Unless running in Windows

(set win32=T), the pickle will be compressed with gzip.

2.5.1. Pickle naming conventions

Things obviously get complicated because of the wide array of options when building motifs. Each
pickle is therefore named with the most important parameters used during SLiMBuild.

lXwXoXaX

lX : slimlen=X

wX : maxwild=X

oX : adjusted ambocc=X value

aX : a code for which ambiguity is used: 0=None, 1=equiv, 2=wildvar, 3=both, 4=both+combined

NB. It is assumed that the input dataset itself does not change! If you change the dataset but keep the
same name, things may go very badly wrong! The sequences from the original run, including any
masking of the data, will be re-loaded from the pickle. (If i>=0 then the option to replace the pickle
with the new settings will be given.)

2.5.2. Masked dataset pickles

Because masking in itself can be quite lengthy for large datasets, it is possible to switch on additional
masking pickles that are saved for input data, independent of the main pickling, using
maskpickle=T. By default these are named after the dataset and masking options but the masking

options can be replaced with user-defined text to identify specific masking settings using
masktext=X.

2.6. Secondary SLiMFinder Functions

In addition to the main SLiM discover function of SLiMFinder, a couple of additional tools are
included to help analyses.

2.6.1. Simple Identification of Sequences containing Motifs

The motifseq=LIST option will output fasta files for a list of X:Y, where X is a motif pattern and Y

is the output file. Each motif must be given a separate output file. (You can always concatenate these
afterwards.)

E.g. motifseq=P..P:sh3.fas,RGD:rgd.fas will output all PxxP-containing sequences to a file

called sh3.fas and all RGD-containing sequences to a file called rgd.fas.

By default, SLiMFinder will also run as normal. To stop this, use the slimbuild=F option. This is not

compatible with batch running.

2.6.2. Randomising Batch Datasets

SLiMFinder incorporates a simple algorithm for randomly combining UP clusters from input datasets
into a new set of fasta files with the same numbers of UPC. This is switched on with the randomise=T

option. New datasets will be output into the directory determined by randir=PATH [Random/ by

default] and be given a name in the form:

RAND_X_Y-Z, where RAND is the file prefix given by randbase=X [rand by default], X is the

number of the dataset, Y is the number of sequences and Z is the number of UPC.

Note. When making these random datasets, SLiMFinder does not check whether multiple UPCs
contain identical and/or related sequences. If the input datasets contain overlapping/related UPCs
then it is possible that some actual random datasets will have fewer sequences and/or UPCs than

14 SLiMFinder

Rich Edwards 11 February 2010

listed. This can be identified in the main SLiMFinder output when the SeqNum and/or UP values do
not match the dataset name.

Short Linear Motif Finder 15

Rich Edwards 11 February 2010

3. SLiMFinder Methods & Definitions

This section describes the SLiMFinder methods in more detail. Please also see the SLiMFinder paper
(Edwards et al. 2007).

3.1. SLiMFinder Program Overview

A schematic of SLiMFinder with the main options is given in Figure 3.1. The SLiMBuild and
SLiMChance algorithms are explored in more detail in Chapters 4 and 5, while the output is explained
in Chapter 6.

REQUENCIESAA F

BLAST / UPC

TEIRESIAS

UTPUTO

NPUT AS KINGI M
Disor der

UniPr ot Feat ur es

Low Com plexi t y
N-Ter m inal Met

I UILDSL MB
Dimer s

Ext ension

Am b igui ty

Fil t er i ng

I HANCESL MC
Bonf er r oni

SLiM Pr obab ilit ies

S ig nif ic anc e Cut -of f

Rank ing

NPUTI
seqin=FILE

query=X
batch=LIST

maxseq=X [500]

efilter=T/F [T]
blastf=T/F [T]

blaste=X [1e-4]
force=T/F [F]

buildpath=PATH

masking=T/F [T]
dismask=T/F [F]

ftmask=LIST
imask=LIST

compmask=X,Y [5,8]
maskm=T/F [T]
logmask=T/F

aafreq=FILE
termini=T/F [T]

maskfreq=T/F [F]
smearfreq=T/F [F]

slimbuild=T/F [T]
maxwild=X [2]

slimlen=X [5]
minocc=X [0.05]

absmin=X [3]
preamb=T/F [T]
ambocc=X [0.05]

absminamb=X [2]
equiv=LIST

wildvar=T/F [T]
combamb=T/F [F]

musthave=LIST
query=LIST

focus=FILE
focusocc=X

statfilter=LIST
occfilter=LIST

slimchance=T/F [T]
probcut=X [0.1]

seqocc=T/F [F]
probscore=X [Sig]

topranks=X [0]

walltime=X

resfile=FILE

resdir=PATH
runid=X

extras=T/F [T]
slimdisc=T/F [F]

targz=T/F [F]

teiresias=T/F

Figure 3.1. SLiMFinder Overview.

Outline of main SLiMFinder program workflow. The main commandline options are shown in blue
linked to the sections they influence. See 2.4 & 7.5 for a more complete list. Details are given in the
text.

The main SLiMFinder workflow is as follows:

1. SLiMFinder uses the RJE_SEQ (Edwards 2006) module to read in the input dataset. This may
therefore be in any format recognised by RJE_SEQ, although UniProt or Fasta format are
recommended. If no sequence file is given with the seqin=FILE command, then SLiMFinder will

default to “batch” mode and run on all files specified with the batch=LIST command. By default,

this equates to all UniProt (*.dat) and Fasta (*.fas) files in the run directory.

2. If present, the UPCs will be read in from a file (*.upc). Otherwise, the (unmasked) input

sequences are saved as *.slimdb in fasta format and an all-by-all BLAST search performed to

define Unrelated Protein Clusters (UPCs) (see 3.2). If there are insufficient UPCs for SLiMFinder
to meet user parameters, it will exit.

16 SLiMFinder

Rich Edwards 11 February 2010

3. If the appropriate *.pickle file present, this will be loaded. Otherwise, the input data will be
masked according to user choices, masking out predicted ordered regions, selected UniProt

features, low complexity regions and/or N-terminal methionines (see 4.1).

4. If the appropriate *.pickle file was not present, the main SLiMBuild algorithm is executed. First,

all iXj dimers are found using the maxwild=X parameter setting (4.2.1). These dimers are then

reduced to those that meet the support requirement set by the ambocc=X option. iXj dimers are
then assembled into longer SLiMs (upto the length defined by slimlen=X) by matching iXj and

jYk dimers with the appropriate occurrences (4.2.2). Where preamb=T, motif ambiguity is

introduced during this phase (4.2.3).

5. If teiresias=T then SLiMFinder will run in TEIRESIAS Mode, outputting a file of masked

sequences and a TEIRESIAS-format file of shared motifs.

6. Amino acid frequencies (5.1) are then calculated on the dataset for each sequence and each UPC.
This may use masked sequences (maskfreq=T) or unmasked (maskfreq=F) sequences, or an

external source of frequency information (aafreq=FILE). Frequencies may be UPC-specific

(smearfreq=F), or averaged over the whole dataset (smearfreq=T).

7. The SLiMChance algorithm estimates motif significance. The probability of each motif is then

calculated using its support and amino acid frequencies (5.2). Probabilities are then corrected for
the size of motif space searched and the probcut=X cut-off to identify the subset of “Significant”

motifs.

8. Lastly, significant motifs are ranked and output (Chapter 6).

3.2. Unrelated Protein Clusters (UPC)

SLiMFinder is concerned in finding motif occurrences in “Unrelated Protein Clusters” (UPCs). Each
UPC is a group of proteins that are not related to any proteins in the dataset outside of their own UPC

(Figure 3.2). BLAST (Altschul et al. 1990) is first used to identify which proteins are related to which
other proteins. Each protein is put in a cluster with all the other proteins which are hit during a
BLAST search. If the BLAST results for any of these proteins include proteins not hit by the original
sequence, then these too are added to the UPC. This is repeated until none of the proteins within the
UPC hit, or are hit by, proteins in another UPC.

BLAST Homology (no scale)

Figure 3.2. Generation of UPC from BLAST results.

An all-by-all BLAST is performed, which identifies all protein pairs with detectable homology. These
are then clustered such that no protein in a cluster has BLAST homology with a protein in another
cluster, while every protein in a cluster has homology with at least one other protein in its cluster.

Short Linear Motif Finder 17

Rich Edwards 11 February 2010

Within each UPC a modification of Primm’s algorithm (Davey et al. 2006) is used to determine the
“Minimum Spanning Tree” (MST) adjusted size of that UPC in terms of sequences. This MST value
varies from 1 to N, where N is the number of proteins in the UPC. If all proteins are 100% identical,
the MST is 1. If all proteins were 100% different (never true for a UPC!) the MST is N (see SLiMDisc
(Davey et al. 2006) for more details). This MST value is then converted into an MST correction M by
dividing the MST value by N.

SLiMFinder uses the largest GABLAM ordered identity (Edwards & Davey 2006) to generate the
distance matrix for MST calculations.

3.3. SLiM Definitions

This covers the basic definitions needed to understand this manual. The term “motif” can be used in a
number of different contexts with different meanings. In this manual, I use motif to mean a short,
linear motif (SLiM) in a protein. In biology, SLiMs are functional microdomains with three main
properties:

Short – generally less than 10aa long with five or less defined residues.

Linear – comprised of adjacent amino acids in a protein’s primary sequence. While three-
dimensional conformation may be important for function, it is not necessary for definition.

Motifs – there are some defined sequence patterns that are necessary for function and will therefore
recur in the relevant proteins, allowing identification.

In this manual, “SLiM” may describe a true functional motif with these properties, or simply a SLiM-
like sequence pattern that may be functional or may simply be a chance occurrence.

3.3.1. SLiM Anatomy

The basic anatomy of a SLiM is shown in Figure 3.3.

The number of positions for a SLiM, L is the number of defined (i.e. non-wildcard) positions (upto
slimlen=X). The total length of a SLiM is the number of defined (i.e. non-wildcard) positions plus

the number of wildcard positions:

∑
−

=

+
1

1

L

w

wXL , where Xw is the number of wildcard positions at position w.

[KR] L [FYLIVMP]x x{0,1}

Defined positions

Fixed position

Fixed-length
Wildcard “gap”

 or X . Flexible-length
Wildcard {min,max}

“Ambiguous” (Degenerate)
Position

Figure 3.3. Anatomy of a SLiM.

Definitions of different properties of SLiM have been marked on the example ELM, LIG_CYCLIN_1
(Puntervoll et al. 2003). This motif has three defined positions (one fixed and two degenerate) and two
wildcard spacers (one fixed, one flexible-length) for a total length of 4-5aa.

18 SLiMFinder

Rich Edwards 11 February 2010

3.3.2. SLiMs and SLiMBuild Dimers

SLiMs are defined in terms of the number of non-wildcard positions and the number of wildcards
between each pair of positions. Each SLiM is therefore made up of a number of overlapping dimers i-
X-j where i and j are non-wildcard positions and X is the number of wildcard characters separating
them. E.g. the well-known RGD motif is considered by SLiMFinder to be R-0-G-0-D, which in turn is
comprised of the SLiMBuild Dimers R-0-G and G-0-D.

3.3.3. Information Content (IC)

Information content is calculated for each motif based on a uniform distribution of amino acids and
re-scaled to give a value of 1.0 per fixed position and 0.0 for a wildcard. Ambiguous positions are
given a value between 0.0 and 1.0:

ICi = –logN(fa)

where ICi is the information content for position i, fa is the summed frequency for the amino acids (or
nucleotides) at position i and N is number of amino acids (or nucleotides) in the alphabet, i.e. N=4 for
DNA and N=20 for proteins. This is a modification of Shannon's Information Content (Shannon 1997)
such that a wildcard receives 0.0 and a fixed position scores 1.0 when a uniform frequency
distribution is used. Ambiguous positions score between 0.0 and 1.0. When non-uniform frequencies
are used, fixed rare amino acids (fa < 1/N) will score above 1.0, while fixed common amino acids (fa >
1/N) will score less than 1.0. Termini always get an ICi score of 1.0. For each comparison, the lower ICi
value is where ICi is the information content for position i and fa is the number of possible amino acids
at position i. The information content for the motif is simply this score summed over all positions.

3.3.4. Motif Occurrences and Support

An occurrence of a motif in SLiMFinder is a single “instance” of that motif in a given protein and is
identified using the sequence identifier and starting position of the motif. Motifs may have multiple
occurrences with a UPC or even within a single sequence.

The support of a motif in SLiMFinder is defined as the number of sequences that motif occurs in. Note
that support in this context does not make any distinction between motifs with multiple occurrences
in the same UPC. For this reason, SLiMFinder will output the number of occurrences, the support,
and the normalised UP support, which is the number of unrelated proteins (UPCs) in which the motif
is found. The uncorrected support is of interest for identifying the dataset coverage for each motif,

while the corrected support is important for determining its significance (see Chapter 5).

Short Linear Motif Finder 19

Rich Edwards 11 February 2010

4. SLiMBuild Motif Construction

4.1. Input Masking

SLiMFinder masks input by replacing regions and residues with Xs. Note that SLiMFinder masking is
performed after UPC definition and therefore masking will not affect the UP relationships between
sequences. If you want to affect UP definition, then sequences must be masked manually before

running SLiMFinder. SLiMFinder includes several masking options (below). In addition, the rje_seq

module provides additional input data filters (see RJE_SEQ Manual for details). If UniProt files are

not available, the unifake utility can be useful in generating files to maximise the potential of masking
(See website).

4.1.1. Disorder masking

SLiMs tend to occur in disordered regions of proteins. SLiMFinder makes use of IUPRED (Dosztanyi
et al. 2005) and/or FoldIndex (Prilusky et al. 2005) to predict regions of disorder. IUPRED must be
installed locally, while FoldIndex can be run over the web. Residues predicted to be “intrinsically
ordered” are masked out. The IUPRED -off threshold can be altered using iucut=X (0.2 by default).

To use FoldIndex instead of IUPRED, use the disorder=foldindex command. You must have an

active internet connection.

Because disorder masking utilises a per-residue score, there are often single residues that are just
above/below the threshold in a region that is otherwise (dis)ordered. Regions can therefore be
smoothed out using the minregion=X option, which stipulates the minimum number of consecutive

residues that must have the same disorder state. (Dis)ordered regions smaller than this are
assimilated into the neighbouring regions, starting with the smallest (1aa regions) and working up
until all regions are large enough; within each region size, the sequence is traversed from N-terminal
to C-terminal.

4.1.2. UniProt Features

If the input dataset is in UniProt format then features can be masked out. Any feature types given by
the imask=LIST feature will be “inclusively masked”, i.e. any sequence not part of one of these

features will be masked out. Feature types given by ftmask=LIST (EM, DOMAIN, and TRANSMEM
by default) will then be masked out.

4.1.3. Low Complexity Masking

SLiMFinder uses a simple complexity filter. If any amino acid occur N+ times in a stretch of L amino
acids (compmask=N,L) then the central (N-2) occurrences of that amino acid are replaced with Xs.

E.g. PFPPIPLP would become PFXXIXLP.

4.1.4. N-terminal Methionines

If using terminal motif searching (termini=T) then there is a high risk of artefactually returned ^M*

motifs due to the high occurrence of Met at position 1. The maskm=T option masks any position 1 Ms

to remove this artefact. (Of course, real ^M* motifs may be missed as a result.)

4.1.5. Masking by Case

SLiMFinder can also mask out Upper or Lower case sequences as set by the usecase=T and

casemask=X option, where X is Upper or Lower. The case of the sequences can be changed by the

additional option case=LIST, where LIST is the positions to switch case, starting with first lower

case (e.g. case=20,-20 will have twenty amino acids of Upper case at each end of each sequence).

Example. To search only in the C-terminal 30aa of each sequence, use:

python slimfinder.py casemask=Lower usecase=T case=0,-30

NB. In this case, it is recommended to change the way amino acid frequencies are used by adding the

options maskfreq=T smearfreq=T (see 5.1). This will use the amino acid frequencies from just the

20 SLiMFinder

Rich Edwards 11 February 2010

unmasked portions of the sequences. Because these are quite short, they are prone to random
fluctuations, so the smearfreq option will average the frequencies over the sequences.

4.1.6. Relative Conservation Masking

Sites of functional importance are likely to exhibit as much, or more, conservation than those around
them. SLiMFinder incorporates a masking strategy that removes residues that violate this assumption
by masking out any positions that are less conserved than flanking regions as assessed using a score
based on Shannon’s entropy. A conservation score is first calculated for each position, i, of each

sequence using the optional multiple sequence alignment (MSA) input of orthologues (see 2.2.5 and

 7.3):

iaai gffc).)(log1(20∑−=

Where fa is the frequency of each (non-X) amino acid a in the MSA column i and gi is the proportion
of sequences in i that are not gaps. This will be 1.0 for a fixed (100% conserved) residue and tend
towards 0.0 for a totally variable residue in a large alignment (i.e. all 20 aa have a frequency of 1/20).
The “gap penalty” reduces the score for columns with indels and includes Xs as non-gapped residues,
even though these are not included in the entropy calculation. If all the non-gap sequences in a
column are Xs, the amino acid frequencies from the whole alignment are used to calculate the entropy
for that position.

This is then converted into a relative conservation score, ri, which is based on the mean conservation
score across a window flanking the residue, normalised by the standard deviation:

w

wi
i

SD

cc
r

−
=

Where cw and SDw are the mean and standard deviation respectively of the ci scores across a window
of 30aa either side of position i. The resultant score, ri will be positive for residues that are more
conserved than their flanking residues and negative for those less conserved (mean 0.0, standard
deviation 1.0). Any residues that have a different disorder state from residue i are excluded from the
calculation. (Ordered regions generally show a higher level of conservation than disordered regions.)

Any residues with ri < 0.0 are masked out. (If there is no MSA for a protein, all residues will have a
score of 0.0 and no residues will be masked.)

4.1.7. Masking pre-defined motifs

Certain commonly recurring motifs (e.g. [KR][KR] or RSRS) can dominate results from large-scale
analyses. These motifs can now be masked from the input dataset using motifmask=X, where X is a

file containing motifs or simply a list of motifs (see 2.2.2). Wildcard positions in such motif
occurrences will not be masked out. (e.g. PxxP would only mask the two prolines.)

4.2. SLiM Construction

SLiMBuild uses four basic sets of parameters for generating motifs from the dataset:

w, the maximum number of wildcard positions allowed between any adjacent pair of defined
positions.

The maximum number of defined positions. (Sometimes referred to as the “length” of the motif,
although the “true length” of a SLiM would include both defined and wildcard positions.)

s, the minimum support for the motif, i.e. the number of unrelated proteins that motif occurs in.

Ambiguity options, including an equivalency file of allowed ambiguities.

An optional minimum variant support, v, used in extending ambiguity.

Motifs are constructed by first identifying all possible “i-x-j dimers”, which consist of two amino acids i

and j separated by x wildcards, up to the maximum allowed value, w (Figure 4.1(a)). Motifs are then

extended by joining appropriate dimers together (Figure 4.1(b)). Finally, SLiMBuild incorporates

ambiguity into the motifs (Figure 4.2).

Short Linear Motif Finder 21

Rich Edwards 11 February 2010

(Seq1,0)

(Seq1,1)
(Seq1,2)

(Seq1,3)
(Seq1,4)

(Seq1,5)

(Seq1,6)
(Seq1,7)

^ RS SYPXX X

^X

 XX

 XR

SX

 XS

RS

SY

YP

i-0-j Dimers i-1-j Dimers

^ RS SYPXX X

^*X

 X*R

 X*S

R*X

X*Y

S*S

S*P

i-2-j Dimers

^ RS SYPXX X

^**R

R**S

 S**Y

X**S

 X**X

X**P

RS
(b)

(a)

RS*S RS*SY
RS*S*P

RS**Y

SY SY
S*S S*S
S*P S*P
S**Y

SA

S**Y

(Seq1,3)

Seq1:

(Seq1,3)

(Seq1,6) (Seq1,6)

(Seq1,4) (Seq1,4)
(Seq1,6) (Seq1,6)
(Seq1,4)

(Seq2,1)

(Seq1,4)

Figure 4.1. SLiMBuild construction of motifs.

(a) Dimer construction. For each position in a sequence, each possible wildcard length x is used to find
possible “i-x-j” dimers. Dimers containing masked (“X”) residues are ignored (greyed dimers). Note that
the n-terminal “^” marker is treated as any other amino acid. (b) Motif extension. Longer SLiMs are
constructed during the SLiMBuild process by matching the occurrences of shorter SLiMs with the
relevant i-x-j dimers. At each stage, only SLiMs with sufficient unrelated protein support are retained,
making the algorithm very efficient.

22 SLiMFinder

Rich Edwards 11 February 2010

Equiv
Expand

Min.
SupportExtra

Support

Rank
Variants

Combine

Cycle ?

Finish

R-[01]-S-1-S

R-0-S-1-S

R-0-S-1-S

R-0-S-0-S

R-1-S-0-S
R-1-S-1-S

R-1-S-2-S

R-2-S-1-S

R-0-S-2-S

R-2-S-0-S

R-2-S-2-S

R-0-S-0-S

R-1-S-1-S

R-1-S-0-S

R-1-S-2-S
R-2-S-1-S

R-0-S-1-S

R-0-S-0-S

R-1-S-1-S

R-0-S-1-S

R-1-S-1-S
R-0-S-0-S

R-0-S-0-S

R-0-S-1-S

R-[012]-S-[012]-S
RS.S

R.{0,1}S.S

Equiv

ExpandExpand

Extra Support, Rank, Combine and Cycle as in (a)

R-0-S-1-S

K-0-A-1-A
H-0-A-1-A

K-0-A-1-A
R-0-G-1-A

H-0-G-1-A
K-0-G-1-A
R-0-S-1-A

...

R-0-S-1-S

K-0-A-1-S
H-0-A-1-S

K-0-A-1-S
R-0-G-1-S

H-0-G-1-S
K-0-G-1-S
R-0-S-1-S

...

R-0-S-1-S

K-0-S-1-A
H-0-S-1-A

K-0-S-1-A
R-0-T-1-A

H-0-T-1-A
K-0-T-1-A
R-0-S-1-G

...

R-0-S-1-S

K-0-S-1-S
H-0-S-1-S

K-0-S-1-S
R-0-T-1-S

H-0-T-1-S
K-0-T-1-S
R-0-S-1-T

...

R-0-S-1-S

[KRH]-0-[AGS]-1-[AGS]

[KRH]-0-[AGS]-1-[ST]
[KRH]-0-[ST]-1-[AGS]

[KRH]-0-[ST]-1-[ST]

RS.S

(b)

(a)

Figure 4.2. SLiMBuild Ambiguity.

(a) Wildcard ambiguity. Ambiguity is added in a multi-stage process. First, the motif is broken up into
its component parts, consisting of alternate defined and wildcard positions. These are then replaced
by the appropriate equivalency group, which in the case of wildcards is the full range of wildcard
lengths from 0 upto the maximum length allowed. These equivalencies are then expanded to all
possible variants. Variants with insufficient support (grey) are ignored and any variants (red) not
increasing the UPC support of the motif are dropped. The remaining variants are ranked (see text) and
the best variant combined with the original motif (blue). The remaining variants are re-assessed for
increasing UPC support and any failing to do so are again removed. If any remain, the ranking and
combining cycle repeats. If not, the finished degenerate motif is returned. (b) Amino acid ambiguities.
These are handled in the same way as wildcard ambiguities, except that this time equivalencies are
defined by the given equivalency list. If a given amino acid belongs to multiple equivalency groups,
such as serine ([AGS] and [ST]) then all possible combinations of these equivalency groups (four in this
case) are considered separately, thus multiple ambiguous SLiMs can potentially be produced.
(Expansion of these combinations has been truncated in the figure.)

Short Linear Motif Finder 23

Rich Edwards 11 February 2010

4.2.1. SLiMBuild dimer construction

Dimers are constructed simply by taking each position i of each protein in turn to define the first
amino acid, ai. Each wildcard length x from 0 to W, where W is the maximum wildcard length is then
taken in turn and used to define the second amino acid in the dimer, aj where j = i + x. If ai or aj are
masked (an ‘X’) then that dimer is rejected, else the dimer is added to the stored list, along with
information on the protein and position i of its occurrence (Figure 4.1(a)). Symbols representing N-
and C-termini (^ and $) are added to each sequence prior to dimer construction and thereon
considered as additional amino acids.

After all dimers have been found in all sequences, any with a support below the minimum support
threshold are removed. (For a motif to exceed a given support, each of its component dimers must
also exceed that support.) This greatly increases the efficiency of the algorithm. The efficiency is
further increased by establishing the evolutionary relationships first, thus screening out all those
motifs that only occur multiple times because of shared ancestry.

4.2.2. SLiMBuild motif extension

Motifs are extended by concatenating i-x-j dimers (Figure 4.1(b)). For each dimer aix1aj all azx2ak
dimers are examined, where az = aj (k = z + x2, az and ak are amino acids at positions z and k). Where
the two dimers have occurrences in the same protein and z = j, the two dimers are compiled to make a
single aix1ajx2ak trimer. If this trimer occurs in s or more unrelated sequences, it is retained and
extended in the same way to make 4mers. This continues until the maximum motif length is reached
(length 5 by default) or until there are no more motifs with the desired support to extend.

4.2.3. SLiMBuild ambiguity

SLiMBuild considers two types of ambiguity: amino acid degeneracy at a given position, and flexible
length wildcard ‘‘gaps’’. A similar logic is applied in considering both these forms of ambiguity by
carefully combining appropriate motifs generated during SLiMBuild extension. Each fixed motif is
considered in turn as a seed for adding ambiguity in terms of degenerate non-wildcard positions

and/or flexible wildcard lengths (Figure 4.2). Ambiguity is considered in three phases: wildcards only,
amino acids only and combined wildcard and amino acid degeneracy. (Combined ambiguity can be
computationally intensive and is switched off by default.)

In each case, the motif being considered is broken down into individual elements, consisting of
alternate amino acids and/or wildcard lengths. Each element is then replaced by its ‘‘equivalencies’’.
For wildcards, this consists of single wildcard equivalency ‘‘01..W’’, where W is the maximum wildcard
length allowed; e.g. for the default maximum wildcard length of 2, the wildcard equivalencies are 0, 1
and 2, and a variable length gap of 1 or 2 is represented by the equivalency [12]. (Figure 3A). For
amino acid positions, SLiMFinder makes use of an ‘‘Equivalency list’’ for ambiguity in a similar way to
TEIRESIAS, although the actual application of this file is quite different. This equivalency list contains
a number of amino acid groups that may be substituted in degenerate positions; e.g. KR would allow
for [KR] degeneracy, while FYW, would facilitate [FY], [YW], [FW] and [FYW]. A single amino acid
can have multiple equivalency groups, which are analysed separately. E.g. AGS,ST would permit
serine [AS], [GS], [AGS] and [ST], but not [AGST]. Where multiple equivalency groups exist for one or
more amino acids in a SLiM, all possible combinations of equivalency group are considered (Figure

 4.2(b)).

The idea of ambiguity is to try to increase the coverage within a dataset for a given motif. This is
achieved by adding ambiguity that increases support (no of unrelated proteins) for the motif. Thus,
returned motifs need to have been initially seeded by a non-ambiguous motif (with lower support)
before it is extended to consider ambiguity. For each ambiguity combination, all possible variants
(excluding the original motif) are then considered. E.g. [KR]-0-[ST]-1-P yields variant motifs K0S1P,
R0S1P, K0T1P and R0T1P, the second of which is ignored as it is the original motif. Any variants that
do not meet the minimum support requirement are also rejected. Remaining variants are then ranked
according to the following criteria:

1. Number of “new” UP clusters. (The number of UPCs in which the variant is found but the original
motif is not.) If the variant provides no new UPCs then it is rejected.

2. Total (UPC) support for the variant, if tied for 1.

3. Total number of occurrences for the variant (in different sequences, regardless of homology
relationships), if tied for 1 & 2.

24 SLiMFinder

Rich Edwards 11 February 2010

If tied for 1-3, the variant that is most unlikely, given the amino acid frequencies of the whole dataset,
is ranked higher.

The top-ranked variant is retained and its UPCs added to those of the original motif. The ranking is
then repeated using this new UP support, i.e. further variants are not added if their “extra” support
has already been provided by previous variants. This continues until all variants have been retained,

or rejected (Figure 4.2). Finally, retained variants are combined to make an ambiguous motif. E.g. if
R0T1P had been retained then it would be combined with the original R0S1P SLiM to make R0[ST]1P
(R[ST].P). In the case of flexible wildcards, the minimum and maximum length variants retained are
used. i.e. R0S1P+R2S1P = R[02]S1P (R.{0,2}S.P). Note that because different equivalency
combinations are examined separately, one SLiM may spawn several ambiguous motifs (e.g. R [ST].P
and R [AGS].P) but only one ambiguity will be produced per equivalency group (i.e. R[AS].P and
R[AGS].P will not both be produced using a single AGS equivalency group).

To increase the flexibility of ambiguity, SLiMFinder has an option for reducing the minimum support
needed for each variant to be retained by SLiMBuild. The final ambiguous motif must, however, meet
the basic support criteria. i.e. The user could specify a minimum basic support s of three but a
minimum variant support v of two. Ambiguous motifs could therefore be constructed from variants
that each occurred in only two unrelated proteins, though the final motif produced (as well as any
fixed motifs being kept) would occur in at least three unrelated proteins.

4.2.4. Final SLiM Support

After ambiguity has been added (if any), SLiMs are filtered to only retain those with enough support
to satisfy the minocc=X setting. If the query=X option is used, only those motifs in the query

sequence are retained.

4.3. SLiMBuild versus TEIRESIAS

Ignoring the extra utilities of the SLiMChance scoring metrics and additional outputs, the SLiMBuild
approach has a number of advantages for SLiM discovery over TEIRESIAS (Rigoutsos & Floratos
1998) and would therefore make a worthwhile replacement of TEIRESIAS for other SLiM discovery
methods, such as LMD (Neduva et al. 2005) or SLiMDisc (Davey et al. 2006). These are explored in

Table 4.1.

Table 4.1. Major advantages of SLiMFinder over TEIRESIAS for SLiM Discovery.

SLiMFinder TEIRESIAS

Explicitly looks for shared motifs in unrelated proteins:
the more relationships in a dataset, the less motifs
returned (and the shorter the run time).

Looks for all shared motifs: the more relationships in
the dataset, the more patterns returned (and the longer
the run time).

Support is in terms of unrelated proteins – reduced
post-filtering.

Support is in terms of any occurrences – many
irrelevant motifs returned that must be filtered.

Building method allows good estimation of “motif
space” searched, permitting strong statistical treatment
of results.

Search space covered by parameter settings is not
clear, hampering statistical treatment of results. (Crude
restrictions will miss some motifs of interest and/or
return too many (related) motifs.)

Ambiguity is added only when it will increase the
number of unrelated proteins for a motif.

It is not very clear which ambiguous motifs will be
returned.

Flexible-length wildcards are allowed. No flexible-length wildcards.

Advanced filtering and masking options allow the
search-space to be reduced.

No inherent filtering/masking options. Must all be post-
processed.

A probabilistic method (based on binomial theory)
calculates expectations and estimates significance of
results.

Results are returned in a jumble and without any
scoring metric.

Short Linear Motif Finder 25

Rich Edwards 11 February 2010

5. SLiMChance Motif Probability Methods

5.1. Amino Acid Frequencies

By default, amino acid frequencies are calculated from the dataset, individually for each sequence.
These frequencies can be over-ridden using the aafreq=FILE command, where FILE is either a fasta

file (this can be the input file to even aa frequencies across sequences) or an aa frequency file (see
PRESTO for details). If maskfreq=T then the AA frequencies used will not include any masked

residues. This can lead to amino acid bias problems if the unmasked sequences are quite short, which
may in turn lead to artefactually poor significance values for returned motifs. This in turn can be
rectified using the smearfreq=T option, which will calculate AA frequencies for each UPC and then

use mean frequencies across all UPCs for the SLiMChance calculations. Suggested use of these options

is listed in Table 5.1.

The default uses amino acid frequencies for the whole dataset before masking. This can return
significant values as artefacts if the masking itself has a compositional bias. One way to test for this is
to run SLiMFinder with both settings and compare the results. In each case, only known one-letter
amino acids (i.e. no masked residues) contribute to the total.

Table 5.1. Suggested use of Amino Acid Frequency options.

Scenario Suggested settings

Dataset consists of full-length proteins, without masking. maskfreq=F smearfreq=F

Dataset is masked but unmasked regions are still long. maskfreq=T smearfreq=F

Dataset is masked and unmasked regions may be short. Masking is
independent of AA composition.

maskfreq=F smearfreq=T

Dataset is masked and unmasked regions may be short. Masking
itself may have a compositional bias, such as masking ordered
regions or UniProt domain features.

maskfreq=T smearfreq=T

Dataset consists of a compositionally biased subset of the “true
search space”, such as a set of phage display peptides.

aafreq=FILE

5.2. SLiMChance motif probability estimation

SLiMBuild returns the list of motifs that occur in the desired number of unrelated sequences.
However, because only a few amino acids define each motif, there is a reasonably high chance of a
motif recurring in unrelated sequences purely by chance. This is further complicated by the fact that a
large number motifs are being considered for any given dataset and each of these motifs has a chance
of recurring. The SLiMChance algorithm therefore consists of two layers (described in detail below):

SLiMChance calculates the absolute probability for each motif returned by SLiMBuild. If a motif
occurs in k unrelated proteins, the absolute probability is the probability of exactly that motif
occurring in k+ UPCs in the dataset. This calculation is based on the amino acid composition of the
dataset.

SLiMChance adjusts the absolute probabilities in an attempt to account for the fact that multiple
motifs are being considered and these motifs are only being considered (i.e. only being returned by
SLiMBuild) because they occur a certain number of times in the dataset. This calculates an estimate of
how many motifs with a given absolute probability or smaller should be returned by the dataset, or the
probability of seeing that motif or another one like it. This is based on the Bonferroni correction for
multiple testing.

26 SLiMFinder

Rich Edwards 11 February 2010

5.2.1. SLiMChance probabilities per UPC

SLiMChance first calculates the probability of seeing each motif in each UPC, given its amino acid
composition and i-x-j dimer frequencies. This probability is calculated using the binomial distribution
and the expectation of the motif occurring at each site in the UPC, which is a simple calculation based
on the frequency of each amino acid (fa), and the total number of positions that a motif can occur (Nm).
By default, amino acid frequencies are calculated from the dataset, individually for each UPC, before
any masking takes place. Additional options allow amino acid frequencies to be adjusted for masking,
averaged over all UPCs, or read from a file.

For each defined position in a motif with d alternative (degenerate) amino acids, the probability of
occurrence at any residue in the dataset (pi) is the sum of the frequencies for the possible amino acids
at that position:

∑
=

=
d

a

ai fp
1

The probability pm of the whole motif starting at any residue is therefore the product of pi over all L
positions in a motif:

 ∏
=

=
L

i

im pp
1

(Wildcard positions do not contribute to this value, as the probability of matching a wildcard is 1.0.).

This defines the probability for each “Bernoulli trial” in the binomial distribution. What remains is to
define appropriately the number of trials for the motif in the UPC. There are two features of the UPC
that complicate estimation (for the probability calculation) of the number of positions that a motif
might arise at: firstly, some but not all regions of the UPC proteins are related by evolution, and
secondly, the particular pattern of masking may alter the number of positions available for motifs with
a particular distribution of non-wildcard positions.

Because the proteins within a UPC are evolutionarily related, they do not contribute to the motif space
searched by SLiMFinder in the same way as unrelated proteins, for which the motifs found would be
independent. However, unless all the sequences are 100% identical, there are still more independent
positions at which a given motif could occur than in any of the individual sequences within the UPC.
The UPC must therefore be rescaled to represent its true contribution to the dataset. This is performed
using the “Minimum Spanning Tree” (MST) correction used by SLiMDisc (Davey et al. 2006) to
correct for evolutionary relationships. This MST value varies from 1 to N, where N is the number of
proteins in the UPC. If all proteins are 100% identical the MST value is equal to 1 (and the UPC is
exactly equivalent to a single sequence). As the proteins become more dissimilar, MST tends towards
N (see SLiMDisc (Davey et al. 2006) for more details). This is converted into an “MST correction”, M,
for the UPC by dividing the MST value by N. The total size of the UPC is therefore adjusted by
multiplying Naa (the total number of unmasked residues in the UPC) by M. (This is equivalent to the
mean number of amino acids per sequence in the UPC, multiplied by the MST-corrected size of the
UPC.) SLiMFinder uses the largest GABLAM (Davey et al. 2006) ordered percentage identity between
each pair of sequences to generate the distance matrix for MST calculations.

The distribution of masking may influence the potential for a particular type of motif (e.g. L..LY..L) to
occur. For a dimer motif with a given wildcard length x, SLiMChance directly observes the frequency
of positions in the dataset that could accommodate a dimer motif of that wildcard length. Then, for
longer motifs, it estimates the frequency of potential sites as the product of the fraction of dimer sites
for all the dimers that constitute the motif. This has the numerical advantage that the frequencies of
dimer types are previously available from the SLiMBuild computation. The number of trials is then
estimated as the possible number of positions at which the motif could start (Nm). Nm is calculated
empirically from the dataset. During dimer generation, (Dx) the fraction of unmasked residues that
start with a dimer of that particular wildcard-length x is calculated as a proportion of non-masked
positions in the UPC.

aa

ixj

x
N

N
D =

Short Linear Motif Finder 27

Rich Edwards 11 February 2010

Where Nixj is the count of such dimers in the UPC for which neither i nor j are masked, and Naa is the
total number of unmasked residues in the UPC.

Nm, the number of positions at which a motif may potentially occur is then calculated from the product
of the motif’s component dimer frequencies and the MST-adjusted number of unmasked residues in
the UPC:

∏
−

=

=
1

1

L

w

xwaam DMNN

where M is the MST correction for that UPC, L is the length (no. of positions) of the motif and Dxw
 is

the dimer frequency for that wildcard length x at wildcard position w. (For flexible-length wildcards,
this is the mean dimer frequency of the length variants at w.)

If there are wildcard length variants, each length variant has a chance of occurring and so this
effectively increases the number of possible motif positions via a simple multiplication, where xj is
number of wildcard variants at wildcard position j:

∏∏
−

=

−

=

=
1

1

1

1

L

j

j

L

w

xwaam xDMNN

It could be argued that this multiplier should apply to the probability of the motif at each position,
rather than the number of motif positions. (In reality, each motif “position” is a starting residue.
Obviously, there cannot be more starting residues than the length of the sequence, whereas this
multiplication implies that there can be.) The reason for applying the correction to Nm, however, is that
this value has no upper bound for the binomial calculation. The probability pm, in contrast, must be ≤
1.0, whereas the multiplier for numerous variable-length wildcards could cause it to exceed 1.0.

The probability of 1+ occurrences of the motif in the UPC is calculated using the binomial:

mN

mpp)1(11 −−=+

5.2.2. SLiMChance probabilities per dataset

The individual p1+ values are then used to calculate the motif probability for the entire dataset, p,
where NU is the number of UPCs in the dataset and KU is the number of UPC containing the motif.
Again, this is calculated using the binomial, where pu is the mean p1+ value for each UPC:

U

N

u
u

N

p

p

U

∑
=

+

= 1

1

kN

u

k

u

Kk U

U U

U

pp
kNk

N
p)1.(.

)!(!

!
1 −

−
−= ∑

<

In addition, the expected number of UP occurrences is calculated, which is simply the sum of the p1+
values.

5.2.3. SLiMChance significance values

The probability calculated above is the estimated probability of seeing a given motif with its observed
support (or greater) given the dataset. However, the calculations implicitly assume that the motif was
defined before anything was known about the dataset. In reality, SLiMFinder is looking for all possible
motifs and only actually returning those at the “top end of the distribution”, i.e. the over-represented
motifs. In reality, each motif in the “motif space” searched has a chance of being stochastically over-
represented, so it is important to adjust for this and establish a significance value for each motif.

The a priori probability of each motif in motif space being over-represented with a probability p is
itself (perhaps obviously) p. Because of the wall that SLiMBuild generates motifs using a maximum
wildcard spacer length, X, it is possible to calculate exactly the size of the motif space, BL, for each
length of motif L:

28 SLiMFinder

Rich Edwards 11 February 2010

1)1(20 −
+=

LL

L XB

The significance of a motif with occurrence probability p can therefore be calculated using the
binomial distribution as the probability of getting one or more successes given BL trials of probability
p.

LB
pSig)1(1 −−=

This significance ranges from zero to one can be thought of as a true p-value. Because different lengths
of motifs are not independent of each other, this significance value is calculated independently for
each number of defined positions. The motif space calculation only calculates the number of fixed-
position motifs in the search space. Allowing ambiguities obviously increases the size of the search
space and very relaxed ambiguous searches may need to use a more stringent p-value accordingly.

5.3. Increasing significance with restricted searches

The SLiMChance calculations assume that nothing is known about the motif a priori. Sometimes,
however, additional information may be used to restrict the search space and thus increase the
significance of returned motifs. The most common ways to do this are to specify query sequences, that
must contain the motif, or to specify particular amino acids that the motif must contain. These are
described below.

5.3.1. Query sequences and focus groups

Sometimes, you are only interested in motifs that occur in a particular sequence, or group of
sequences. These can be given using the query=LIST option. In this case, only motifs that occur in at

least one query sequence will be returned. Sometimes, this will increase the significance of the
returned motifs. This significance adjustment is performed using, once again, the binomial
distribution, where:

� the number of trials n is the observed UP support of the motif

� the probability of each trial p is the proportion of UPC that contain one of the query

sequences

� the number of successes k is 1 (the number of UPC that the motif must occur)

The SLiMChance significance is multiplied by this probability. In small datasets, this will probably
have little impact as significant motifs will tend to occur in all UPC, and the probability of seeing them
in the query UPC is therefore 1.0. (If they occur in all UPC, they must occur in the query.) For larger
datasets, the impact can be quite strong. If a motif occurs in 10 of 50 UPC, for example, the probability
of it occurring in your query sequence is approx 18%, so the significance of the motif will be increased
roughly five times.

This can be extended further using the focus=FILE command (see 2.2.4). This allows you to set

multiple query groups and specify how many of them must have the motif using focusocc=X. In this

case the binomial is still used but the number of successes is determined by the focusocc setting.

5.3.2. MustHave amino acid restrictions

Sometimes you want to limit motifs returned to contain a given amino acid, e.g. tyrosine if looking for
tyrosine phosphorylation motifs. This can be done quite simply by using the musthave=LIST

command, where LIST a list of amino acids. Returned motifs must contain at least one of these amino
acids. This increases the significance of motifs by reducing the motif space.

If a is the number of amino acids in the MustHave list, the proportion of motifs that contain 1+
MustHave amino acids, H, for a motif of length L, is given by:

LaH)1(1
20

−−=

The size of motif space is then corrected to be BLH.

Short Linear Motif Finder 29

Rich Edwards 11 February 2010

6. SLiMFinder Output Explained

One of the features of SLiMFinder is the wealth of information available in the various outputs. For an

initial inspection of the results, the basic results file (slimfinder.csv or resfile=FILE) should be the
first port of call and contains all the results for all datasets and their summary statistics. For further

evaluation of specific results, however, the additional outputs (see 2.3.3) can be extremely useful.
These outputs are described in detail below and are saved in the directory specified by resdir=PATH

(SLiMFinder/ by default).

6.1. Main SLiMFinder Output (slimfinder.csv)

The main output for SLiMFinder is a delimited file containing statistics on each dataset and any
returned SLiMs. If no SLiMs are returned, a number of the columns will be blank but run- and
dataset-specific information will still be output. The name of this file is set using the resfile=FILE

option. If no file extension is given, “.csv” will be added. If the file extension is “.csv”, the file will be

comma delimited. If it is “.txt” then it will be space delimited. All other extensions will result in a tab

delimited file. (“.tdt” is recommended.)

6.1.1. Overwriting, appending and backing up results

By default, the main results file will be overwritten and a backup (optionally) saved as *.bak. If
append=T then the file will be appended instead, allowing multiple runs to be examined together with

ease. (Whatever this setting, multiple datasets within a single batch run will be output into a single
file.) All dataset-specific files will be overwritten regardless of the append setting, so multiple runs
should be redirected into different output directories using resdir=PATH. Previous results, namely

the *.upc and *.*.pickle files can still be read in with the appropriate redirection by the
buildpath=PATH option. (SLiMFinder will first look in the results directory and then in the build

path. Both are set to SLiMFinder/ by default.)

6.1.2. Main Output Fields

The main output file consists of a number of dataset-specific and motif-specific fields. These are

outlined in Table 6.1.

6.2. Sequence Relationships (*.upc, *.self.blast, *.dis.txt, *.phydis.txt)

Sequence relationships are very important for defining which motifs have sufficient support and for
correctly adjusting the occurrence probabilities.

6.2.1. UPC Definitions

UPC definitions are made using an all-by-all BLAST, the results of which may be found in the
*.self.blast file. UPCs are then saved in the *.upc file, which is a simple text file in the form:

#LIG_14-3-3_1# 4 Seq; 3 UPC; 3.897 MST

UP N MST Seqs

1 2 1.897 RAF1_HUMAN__P04049 M3K5_HUMAN__Q99683

2 1 1.000 BAD_RAT__O35147

3 1 1.000 MPIP3_HUMAN__P30307

The first row contains the dataset name, the number of sequences, the number of UPC and the MST
corrected size for the whole dataset. The closer the MST value is to 1, the more related the proteins
are. A totally unrelated dataset will have an MST value equal to the number of sequences. The rest of
the file is a simple table of the UPCs themselves: UP = UPC identifier; N = number of sequences in
UPC; MST = corrected size of UPC; Seqs = List of sequences in that UPC.

This file can be manually edited to modify the way that SLiMFinder uses the dataset. (If present, this
file will be read in by SLiMFinder rather than regenerated, unless force=T.)

30 SLiMFinder

Rich Edwards 11 February 2010

Table 6.1. Fields for main SLiMFinder Output.

Field Type† Description Help‡

Dataset Dataset Dataset name. Generally input filename without its file extension. This will be
the first part of any dataset-specific file names in the output directory.

 2.2

RunID Run Run identifier set by runid=X. The date & time is used if no ID is given. This
allows the results of several runs to be compiled in a single results file and
easily distinguished.

Masking Run Summary of masking options: 'Dis' = disorder [dismask=T]; 'Comp' =
complexity [compask=X,Y]; 'FT' = UniProt features [ftmask=LIST]; 'Inc' =
inclusive features [imask=LIST]; 'Freq' = Mask AA frequencies
[maskfreq=T]; 'None' = None.
cntd over page…

 4.1

Build Run SLiMBuild settings. Also used for pickle naming. lXwXoXaX, where lX =

SLiM length [slimlen=X]; wX = max. wildcard [maxwild=X]; oX =

adjusted ambiguous occurrence [ambocc=X] value; aX = which ambiguity is

used: 0=None, 1=equiv=LIST, 2=wildvar=T, 3=both,
4=both+combamb=T.

 2.5.1

RunTime Dataset The time taken for the dataset to run (HH:MM:SS).

SeqNum Dataset Number of sequences in dataset.

UPNum Dataset Number of UPC in dataset. 3.2

AANum Dataset Total number of unmasked AA in dataset. 4.1

MotNum Dataset Number of motifs with minimum support requirement (i.e. would be output if
no probability cut-off.

 4

Rank Motif Rank of returned SLiM. If a slimcheck=LIST motif, this will have a value of
“*”. If no motifs of any kind are returned, the dataset will have a rank of 0 and
no other Motif fields will have values.

Pattern Motif Pattern of returned SLiM. 3.3.1

IC Motif Information content. 3.3.3

Occ Motif Total number of occurrences across all sequences. 3.3.4

Support Motif Total number of sequences containing motif. 3.3.4

UP Motif Total number of unrelated proteins containing motif. 3.2

ExpUP Motif Expected number of unrelated proteins containing motif. 5.2

Prob Motif The uncorrected probability of the motif. (The probability of k+ observations
of a pre-defined motif.)

 5.2

Sig Motif The corrected p-value of the motif 5.2

Cloud Motif Identifier of Motif Cloud to which the SLiM belongs. (Numbered starting at 1
for the most significant motif.)

 6.4

CloudSeq Motif Number of sequences covered by that motif cloud. 6.4

CloudUP Motif Number of unrelated protein clusters covered by motif cloud. 6.4

†Field content either pertains to the specific Motif returned, the Dataset searched, or the Run settings
that yielded those particular results.
‡Section of manual containing more information.

6.2.2. Distance Matrices

In addition to this file, two distance matrices are output: a plain tab delimited file *.dis.tdt and a

PHYLIP (Felsenstein 2005) format *.phydis.txt file. These files contain the pairwise GABLAM
sequence identities. (For the PHYLIP file, sequence names may be replaced by the number of the
sequence in the input file.)

Short Linear Motif Finder 31

Rich Edwards 11 February 2010

6.3. Dataset rank files (*.rank)

The *.rank file is similar to the output from SLiMDisc. This consists of a self-explanatory file header
and a number of tab delimited fields from the main results output (See above).

6.4. Motif Clouds (*.cloud.txt)

Where significant motifs are returned, SLiMFinder will group them into Motif "Clouds" that consist of
physically overlapping motifs (2+ non-wildcard positions are the same in the same sequence). This
provides an easy indication of which motifs may actually be variants of a larger SLiM and should
therefore be considered together.

The *.cloud.txt file contains information about the Significant Motif Clouds. The top of this file
contains a self-explanatory header listing numbers of sequences, UPCs, SLiMs and clouds as well as
motif cloud summaries listing the SLiMs making each cloud and the sequences containing one or
more SLiMs in that cloud.

The rest of the file contains matrices listing the proportion of the entire dataset and of each other
cloud contained by each motif cloud. Each row is a cloud, identified by its ID number and most
significant SLiM in the first column. The second column is proportion of the sequences or UPCs in the
whole dataset that contains one or more SLiMs in that cloud. Subsequent columns contain the same
calculation but for the other clouds rather than the entire dataset.

These are not necessarily reciprocal. E.g.

Cloud Dataset 1 2

1:[DE]D[DE]F..F 0.88 1.00 0.75

2:Q.KR..Q.{0,1}Q 0.50 0.43 1.00

In this case 43% of the sequences in cloud 1 are also in cloud 2, while 75% of the sequences in cloud 2
are also in cloud 1. (This is because the clouds are different sizes.)

In addition to these matrices, tables are given with the statistical significance of any observed (lack of)
overlap between clouds. The first is the probability of seeing that much overlap or more, given the
proportion of the total dataset covered by each cloud. The second gives the probability of seeing that
little overlap or less.

6.5. Motif Occurrence Tables (*.occ.csv, *.dat.rank & *.out)

In addition to the overall SLiM tables, statistics for the individual motif occurrences are also

produced. The *.dat.rank (SLiMDisc emulator) and *.out (TEIRESIAS emulator) files simply contain a
list of the proteins and then the protein and position for each motif occurrence in a simple one-line-

per-motif format. The *.occ.csv file contains more detailed data on each occurrence in a comma
separated file. These field headings are mostly reasonably obvious but see the PRESTO and
SLiMPickings manuals for more details.

6.6. Sequence files (*.motifaln.fas, *.maskaln.fas, *.mapping.fas,
*.masked.fas, *.motifs)

Assuming any motifs are returned, SLiMFinder outputs a number of sequence files to aid exploration
of the results:

*.motifaln.fas = Alignment of all occurrences for each returned SLiM, with the surrounding sequence
context (set using flanksize=X [default 30])

*.maskaln.fas = Same as above but showing masking of residues

*.mapping.fas = Fasta file containing sequences for each input sequence. These sequences are present
in threes for each input sequence:
1. The significant motifs found in that sequence, aligned to (2) and (3)
2. The full-length unmasked sequence
3. The full-length masked sequence

4. In addition, if alignments are used (7.3), each protein will have its homologues aligned.

32 SLiMFinder

Rich Edwards 11 February 2010

*.masked.fas = The input dataset, masked.

*.motifs = A file containing all significant motifs, plus any motifs given with the slimcheck=LIST

option. This file is in the correct format for PRESTO or CompariMotif, or to be used as a
slimcheck=LIST or motifseq=LIST input for future runs.

6.7. CompariMotif Comparisons (*.compare.tdt)

All significant motifs, plus any motifs given with the slimcheck=LIST option, are compared with

each other using CompariMotif (Edwards et al. 2008) and the results output to *.compare.tdt. This
allows the user to check for previously known motifs in their results. See the CompariMotif manual
and/or website for more details.

6.8. XGMML Cytoscape Files (*.xgmml, *.cloud.xgmml)

For further visualisation, SLiMFinder outputs two XGMML format files that can be opened with
Cytoscape (Shannon et al. 2003). Cytoscape is a free network visualisation tool. SLiMFinder outputs
the input proteins and returned SLiMs as nodes of the network. UPC relationships, CompariMotif

matches and occurrences of SLiMs in proteins are all represented as different edges (Figure 6.1). The
file can be uploaded into Cytoscape using the File -> Import -> Network (Multiple File Types)
command (CTRL+L). When first loaded, nodes will be displayed in a simple, uninformative, grid. Use
one of the Cytoscape Layouts (e.g. Layout -> yFiles -> Organic) to make it clearer. Node
(motif/protein) and edge (match/upc/occurence) can be viewed for selected nodes/edges using the

Cytoscape Data Panel (Figure 6.2). See the Cytoscape documentation for details.

Figure 6.1. Cytoscape visualisation of SLiMFinder XGMML output for LIG_CYCLIN_1.

Proteins are blue ellipses and SLiMs are red diamonds. Black lines indicate UPC relationships
between proteins. Blue arrows indicate occurrences of motifs in proteins.

Short Linear Motif Finder 33

Rich Edwards 11 February 2010

(a)

(b)

(c)

(d)

(e)

Figure 6.2. Cytoscape visualisation of XGMML output for LIG_PCNA results.

(a) Standard XGMML can get cluttered if lots of overlapping motif variants are produced. (b) The cloud
XGMML simplifies this output by collapsing SLiMs into their clouds. Details for (c) Proteins, (d) Motifs,
and (e) different kinds of edges can all be accessed using the Cytoscape data panel.

NB. One current limitation of the XGMML file is that only one occurrence for each Motif-Sequence
pair is displayed, regardless of how many occurrences there actually are.

Sometimes, such as the results using proteins annotated with LIG_PCNA ELMs, the standard
XGMML can become very cluttered because of all the similar, overlapping motifs that are returned
(Figure 6.2(a)). Just as the motif cloud output (6.4) can simplify interpretation of raw results, so the

cloud XGMML output (Figure 6.2(c)) can clarify visualisation in such cases. Note that occurrences are
compressed to each cloud and so individual occurrence information is no longer available. Cytoscape
allows multiple networks to be displayed simultaneously, however, and so occurrence details can be
obtained through cross-referencing the standard XGMML file.

34 SLiMFinder

Rich Edwards 11 February 2010

7. SLiM Statistics and Filtering

This part of the manual is incomplete. Please feel free to experiment with the filtering options, many
of which are shared with PRESTO, SLiMPickings and SLiMSearch. (These manuals may have more
information.) These options are under development and should therefore be used with an element of

caution. The rje_slimcalc.py module contains the fullest list of command-line options but see also

rje_slimlist.py.

7.1. Additional SLiM Calculations (slimcalc)

The additional SLiM calculations implemented by SLiMFinder are controlled with the
slimcalc=LIST option, where LIST is one or more of SA, Hyd, IUP, Fold, Comp and Cons. In each

case, an additional column will be added to the *.occ.csv output (6.5) with the relevant calculation for
each SLiM occurrence. In addition, a STAT_mean column will be added to the main

resfile=FILE output (2.3.1 & 6.1), containing the mean of the relevant stat across all occurrences of

the SLiM. Percentiles can also be returned in steps defined using the percentile=X option, giving

addition STAT_pcX columns. E.g. percentile=25 will return the 0th, 25th, 50th, 75th and 100th
percentile in columns *_pc0, *_pc25, *_pc50, *_pc75, *_pc100. This can be useful, for example, for
identifying SLiMs for which at least 50% of occurrences meet a given criteria.

7.1.1. Surface Accessibility [SA]

This is calculated using a very crude SA estimate based on Janin & Wodak (Janin & Wodak 1978) over
a 7 aa window. Each amino acid gets a SA value based on it and the 3 amino acids either side. These
values are then averaged over the length of the SLiM.

7.1.2. Hydropathy [Hyd]

This is calculated using the Eisenberg scale (Eisenberg et al. 1984) over an 11 aa window, centred on
each amino acid. The mean is then taken across the SLiM.

7.1.3. Disorder [IUP & Fold]

The same disorder methods used for filtering are used to calculate the mean disorder across the

SLiM/window (see 4.1.1.). Each amino acid gets its own disorder score, ranging from 0 (ordered) to 1
(disordered), which is then averaged over the length of the SLiM.

7.1.4. Complexity [Comp]

The complexity measure calculated by slimcalc is very crude. It is simply the number of different
amino acids observed across the length of the SLiM occurrence, divided by the maximum possible
number, which is the length of the motif or twenty, whichever is smaller. E.g. a PxxPx[KR] motif
occurrence with a sequence PASPPR would have a complexity of 4/6 = 0.6667.

7.1.5. SLiM Conservation [Cons]

Calculating the conservation of a SLiM occurrence is a complicated business with no clear best
methodology. The relatedness of the proteins in the alignment is obviously expected to impact on any
calculation, as is the general conservation of the protein as a whole. In addition, there are different
ways to deal with ambiguity in motif definitions and/or amino acid substitutions that change only part
of the SLiM. SLiMFinder implements a number of SLiM conservation strategies and parameters,

which are covered in more detail in 7.2. In each case, however, a Cons value will be produced that
ranges from 0.0 (not at all conserved) to 1.0 (completely conserved). In addition, the number of
homologues present in the alignment used for the calculation (HomNum), the mean global percentage
identity of these homologues (GlobID) and the mean percentage identity across the motif only (LocID)
will be outputted. If the protein had no homologues, HomNum will be 0.0 but the conservation will be
given as an arbitrary 1.0.

Short Linear Motif Finder 35

Rich Edwards 11 February 2010

7.1.6. Extending Calculations to flanking regions

For the returned occurrence statistics, a window comprising of the motif + winsize=X is used. If

winsize < 0 then only the flanks are used and not the motif itself. This does not apply to SLiM
conservation scores or to the Local percentage identity returned.

7.2. SLiM Conservation Calculations

An important function of SLiMFinder is the ability to calculate conservation statistics for each match,

provided alignment files are provided. (see 7.3). If alignments do not exist, GOPHER (Edwards

2006) can be used to generate them (see 7.3.1). If the identified file is not actually aligned, then
RJE_SEQ will try to align the proteins using MUSCLE (Edgar 2004) or ClustalW (Higgins & Sharp
1988).

For each sequence, these alignments are used to generate the global percentage identity statistic:

� GlobID = Mean global percentage identity between query protein and homologues. This is
calculated direct from the alignments, excluding matches of Xs, and is the percentage of query
residues that match the aligned residue in the homologue. (Note that this is an asymmetrical
measurement and the percentage of the homologue that aligns with the query may be very
different if the sequences are of different lengths.)

Other conservation statistics are calculated individually for each occurrence of the motif. These are
based on the homologous protein sequences available at that site. Any homologues with masked (X)
residues that coincide to non-wildcard positions of the motif occurrence will be ignored from
conservation calculations. Gaps, however, shall be treated as divergence unless the alngap=F option

is used, in which case 100% gapped regions of homologues are also ignored (see 7.2.9). These
additional statistics are:

� Cons = This is the conservation score across available homologues for that occurrence

� HomNum = Number of available homologues for that occurrence

� LocID = Mean local percentage identity between query protein and available homologues across
region of match

Currently, there are four main Conservation scores implemented, which can be selected with the
conscore=X option:

7.2.1. Absolute Conservation [abs]

For absolute conservation (conscore=abs), SLiMFinder first identifies the regions of the alignment

that correspond to matches in the Query protein. Each aligned sequence is then taken in turn and the
relevant region extracted, de-gapped, and compared to the original regular expression, i.e. the
degenerate motif. The conservation score is then the proportion of these homologues in which the

degenerate motif is conserved (Figure 7.1). (To calculate conservation of the specific occurrence of the
motif, use the consamb=F option.)

7.2.2. Positional Scoring [pos]

Positional scoring (conscore=pos) uses a graded scoring system, where each sequence gets a score

between 0 (no positions conserved) and 1 (all positions conserved). Each matching amino acid

contributes a score of 1.0 (if consinfo=F (see 7.2.7)) and the sum over all positions is divided by the

number of positions. For a degenerate site (when the default consamb=T option is used), the

sequence must match any possible amino acid at that site.

The scoring matrix used for this scoring can be altered using the posmatrix=FILE command, where

FILE contains either lists of equivalent amino acids on each line (e.g. FYW would mean that any of F,
Y or W would score 1.0 vs. any other of F, Y or W), or an all-by-all matrix of amino acids and their
conservation scores, e.g. this might give F-F a score of 1.0 and F-Y a score of 0.5. This allows the
method to be customised according to user-determined rules. In this case, the best score between the
sequence and any variant of a degenerate position is used (unless consamb=F).

36 SLiMFinder

Rich Edwards 11 February 2010

 (a) (b) (c)
[LM].{1,2}G Q[KR][KR].Y PALVALL

100% 75% 25% (or 33.3%)

Figure 7.1. Absolute Conservation.

Three motifs are found in the query protein (marked with blue stars). This protein is ignored for
conservation statistics. The black boxes represent the region of the alignment considered for each
match. These matches in the homologues are then compared to the original regular expression. (a)
Motif [LM]X{1,2}G is 100% conserved because, once gaps are removed, all four homologous sequences
match the degenerate motif. (b) For motif Q[KR][KR]XY, one sequence does not match the degenerate
motif and the query is excluded from the calculation, giving a conservation score of ¾ = 75%. (c) Only
one of the homologues matches the motif. By default, all four sequences are considered, giving a
conservation score of ¼ = 25%. If the alngap=F option is used, the 100% gapped sequence is ignored

and the conservation is therefore 1/3 = 33.3%

Figure 7.2. Position-speciffc Conservation.

The same motifs and alignments from Figure 7.1 are shown but this time position-specific
conservation has been calculated. For simplicity, position-specific information content weighting has
been switched off (consinfo=F) and so each position is weighted equally. (a) All positions in all
orthologues still match, giving 100%. (b) Only one sequence does not match but now only one of the
positions is a mismatch (D for Q) and so that sequence still gets an individual score of 75%, giving a
total conservation of 93.8%. (c) Whereas the absolute conservation score penalises the two mismatches
heavily, the position-specific score gives each of these sequences an individual conservation of 6/7 =
85.7%, for a total conservation score of (2x6 + 0 + 7 / 28 =) 67.9% (or 90.5% if the alngap=F option is
used.)

(a) (b) (c)
[LM].{1,2}G Q[KR][KR].Y PALVALL

100% 93.8% 67.9% (or 90.5%)

Short Linear Motif Finder 37

Rich Edwards 11 February 2010

7.2.3. AA Property Scoring [prop]

This (conscore=prop) is really just a specific example of the posmatrix=FILE command, where an

amino acid property matrix (aaprop=FILE) is converted into a similarity matrix ranging from 0.0 to

1.0. By default, the property matrix of Livingstone and Barton is used (aaprop.txt) (Livingstone &

Barton 1993). See the PEAT Appendices for more information on this matrix.

7.2.4. Relative Conservation Scoring [rel]

The same calculation as used for conservation masking (4.1.6) can also be used to calculate a
conservation score for the motif. This is exception to the 0 < Cons < 1 rule. Relative conservation is
centred around 0.0, with a standard deviation of 1.0, so all positive scores are good and all negative
scores are bad.

7.2.5. Combined Scoring [all]

Under this scoring (conscore=all), the Cons output is the mean of the abs, pos and prop

methods. In addition, statistics are generated for each of the individual scores:

� Pos_Cons = Positional conservation score across homologues.

� Abs_Cons = Absolute conservation score across homologues.

� Prop_Cons = Property-based conservation score across homologues.

� Rel_Cons = Relative conservation score across homologues.

The same additional options are applied to all methods, with the exception that Positional Weighting
by Information Content has no effect on the absolute conservation method.

7.2.6. Motif ambiguity

By default, conservation will use the full degeneracy of the input motif. If consamb=F is used, the

particular matching variant will be used instead. E.g. in Figure 7.1(b), the conservation of QKXXY
would be calculated, rather than Q[KR]XXY.

7.2.7. Positional Weighting by Information Content

The consinfo=T option (the default) weights the contribution of different positions of the motif

proportionally to their information content (IC). The IC of a position ranges from 0 for a wildcard

position to 1 for a fixed position (see 3.3.3). For a fully fixed motif, all positions will have equal
weighting. Otherwise, ambiguous positions make a smaller contribution to the score, which is
normalised such that a sequence that is conserved at every position of the motif gets a score of 1.0. If
consinfo=F, all positions contribute equally. If the “Absolute” motif conservation score is used, this

weighting has no affect.

7.2.8. Homology Weighting

The consweight=X option controls how the conservation scores are weighted according the

similarity of the homologues to the query. For each sequence s, the weighting Ws is calculated using
the global percentage identity of the query versus that sequence, Is, raised to the power of the

consweight=X option, ω:

Ws = Is
ω
 / ΣWs

When ω=0 (the default), Ws = 1 and all sequences are treated equally.

For ω=1, Ws = Is, which up-weights the contribution of sequences closely related to the query. This
means that the comparison of conservation scores will tend to penalise divergence in closely related
sequences and will not be so heavily influenced by incorrect orthology assignment of distantly-related

sequences. This weighting can be increased further with ω > 1.

For ω=-1, Ws = 1/Is, which up-weights the contribution of sequences distantly related to the query.
This means that the comparison of conservation scores will tend to promote conservation in distantly
related sequences but may be influenced by incorrect orthology assignment, which tends to be more of

a problem for distantly-related sequences. This weighting can be increased further with ω < -1.

38 SLiMFinder

Rich Edwards 11 February 2010

7.2.9. Gap Treatment

By default, motifs that match to 100% gaps in a homologue are assumed to be due to missing or
truncated sequences (as in the case of a draft genome, for example,) and do not contribute toward the

relevant calculation (see Figure 7.1(c) and Figure 7.2(c)). Note that the calculation used pretends that
these homologues are not present at all, and does not count them as conserved. If alngap=T,

however, such sequences will be treated as divergence away from a motif and reduce the score.
Sequences that are entirely Xs across the motif are always ignored.

7.2.10. Taxonomic subgroupings

In addition to the general conservation statistics produced for the given alignments, conservation
calculations can be restricted to one or more taxonomic groups. This is achieved using the
conspec=LIST option, where LIST is a list of files containing the UniProt species codes for the

relevant grouping. Wildcards are allowed. Conservation analysis is then limited to these species and
additional columns produced in the output (see below).

e.g. If only interested in the model organisms Human, Mouse, Rat, Chicken and Xenopus, one could
use the command conspec=model.spec_code (or conspec=*.spec_code), where

model.spec_code contains the species codes:

HUMAN

MOUSE

RAT

CHICK

XENLA

This would then produce additional output columns MODEL_Cons, MODEL_HomNum,
MODEL_GlobID and MODEL_LocID. Where multiple files were given, each file would have its own
set of output columns.

NB. The name all is reserved as a special key. Do not use conspec=all.spec_code.

7.3. Protein Alignments for SLiMFinder

SLiMFinder is designed to be able to use the output of GOPHER (Edwards 2006) for alignments of
orthologues. Alternative sources for theses alignments can be used, as long as the format is correct.

Alignments should be in FASTA format with descriptions on one line followed by one or more lines
containing the sequence. All sequences should be of the same length. The first word in each
description should be unique. e.g.

>Seq1 And its description

SEQUENCE-ONE-GOES-HERE

>Seq2

---GAPS--ARE--ALLOWED-

>Seq3

---BUT---ALL-SEQUENCES

>Seq4

MUST-BE-EQUAL--LENGTHS

The file should be named AccNum.X, where AccNum is the accession number of the relevant protein

in the search database, and X is given by the command alnext=X. Files should be found in a
directory identified with the alndir=PATH command. The function to look for and use these

alignments can be switched on using the usealn=T option.

7.3.1. Using GOPHER to make orthologue alignments

The program GOPHER (Edwards 2006) is provided in the download and can be called as part of the
SLiMFinder search using the usegopher=T option. GOPHER will generate its usual files in the

directory specified by the gopherdir=PATH option. This will generate a subdirectory named ALN,

which will be set as the alndir=PATH parameter, if not already set. If not already set as such, the

alnext=X option will be set to orthaln.fas.

To use GOPHER to generate alignments for SLiM conservation, you will need:

Short Linear Motif Finder 39

Rich Edwards 11 February 2010

1. BLAST, MUSCLE and CLUSTALW installed on your system.

2. A sequence database containing potential orthologues. This should be identified to
SLiMFinder using the orthdb=FILE option.

Details of how GOPHER works can be found in the GOPHER documentation.

7.4. Filtering output using SLiM Calculations

Results can be filtered at two different levels using the same basic syntax: individual motif occurrences
can be rejected based on occurrence statistics, or whole motifs can be rejected based on whole-motif
or combined occurrence statistics. These are controlled by the occfilter=LIST and

slimfilter=LIST commands, respectively. Any usual columns of output in either the *.occ.csv
(occfilter) or main results file (slimfilter) can be used, including conservation scores and percentiles
etc. The LIST is in the form “stat1>a,stat2<b,stat3=c,stat4!=d” etc. and should either be a

comma delimited list given on the commandline, or contained in a separate file (named LIST e.g.

statcut=my_statcut_list.txt). If not a file name, enclose in double quotes or the <> symbols
will try to pipe input/output!

The alllowed operators are:

Operator Description

> Filtered if the stat exceeds the cut-off

>= or => Filtered if the stat equals or exceeds the cut-off

< Filtered if the stat is lower than the cut-off

<= or =< Filtered if the stat is lower than or equal to the cut-off

= or == Filtered if the stat is equal to the cut-off

!= or <> Filtered if the stat is not equal to the cut-off

All these may be applied to any stat, included text fields. Stat names should match the column headers
of the output (case-insensitive). If a stat is given that is not recognised, SLiMFinder will report an
error but continue processing without that stat cut-off. Note that the occurrences/SLiMs that meet the
given criteria are removed (filtered).

Warning! Applying > or < to strings (i.e. non-numerical attributes) should be used with caution,
though Python does seem to process them consistently with alphabetical sorting.

7.5. SLiM calculation/filtering options

Table 7.1 gives a summary of the main SLiM calculation and filtering options. Please check module
documentation for latest developments.

40 SLiMFinder

Rich Edwards 11 February 2010

Table 7.1. SLiM calculation/filtering options.

Option Description Default Manual

slimcalc=LIST List of additional attributes to calculate for occurrences -
Cons,SA,Hyd,Fold,IUP,Chg,Comp

[] 7.1

winsize=X Used to define flanking regions for calculations. If negative,
will use flanks *only*

[0] 7.1.6

percentile=X Percentile steps to return in addition to mean [0] 7.1

usealn=T/F Whether to search for and use alignemnts where present. [False] 7.3

alnext=X File extension of alignment files, AccNum.X (checked
before Gopher used).

[False] 7.3 7.3.1

usegopher=T/F Use GOPHER to generate missing orthologue alignments. [False] 7.3.1

gopherdir=PATH Path from which to call Gopher (and look for
PATH/ALN/AccNum.orthaln.fas)

[./] 7.3.1

fullforce=T/F Whether to force regeneration of alignments using
GOPHER.

[False] 7.3.1

orthdb=FILE File to use as source of orthologues for GOPHER. [] 7.3.1

conscore=X Type of conservation score used:
- abs = absolute conservation of motif using RegExp over
matched region
- pos = positional conservation: each position treated
independently
- prop = conservation of amino acid properties
- all = all three methods for comparison purposes

[pos] 7.2

conspec=LIST List of species codes for conservation analysis. Can be
name of file containing list.

[None] 7.2.10

consamb=T/F Whether to calculate conservation allowing for degeneracy
of motif (True) or of fixed variant (False)

[True] 7.2.6

consinfo=T/F Weight positions by information content (does nothing for
conscore=abs)

[True] 7.2.7

consweight=X Weight given to global percentage identity for conservation,
given more weight to closer sequences - 0 gives equal
weighting to all. Negative values will upweight distant
sequences.

[0] 7.2.8 7.2.9

alngap=T/F Whether to count proteins in alignments that have 100%
gaps over motif (True) or (False) ignore as putative
sequence fragments. (NB. All X regions are ignored as
sequence errors.)

[False] 7.2.8

posmatrix=FILE Score matrix for amino acid combinations used in pos
weighting. (conscore=pos builds from propmatrix)

[None] 7.2.2 7.2.3

aaprop=FILE Amino Acid property matrix file. [aaprop.txt] 7.2.3

slimfilter=LIST List of stats to filter (remove matching) SLiMs on, consisting
of X*Y:

- X is an output stat (the column header),
- * is an operator in the list >, >=, !=, =, >= ,<
- Y is a value that X must have, assessed using *.
!!! Remember to enclose in "quotes" for <> filtering !!!

[] 7.4

occfilter=LIST Same as slimfilter but for individual occurrences. [] 7.4

Short Linear Motif Finder 41

Rich Edwards 11 February 2010

8. The SLiMFinder Webserver

The SLiMFinder webserver can be found at http://bioware.ucd.ie/slimfinder.html. This gives
access to the main input page (Error! Reference source not found.). Online help is extensive and
links can be found on the left-hand side. For full functionality, including conservation masking, input
a list of UniProt IDs or accession numbers and click "Get Sequences". Alternatively, sequences can be
directly pasted into the text box or a file uploaded. Formatting restrictions match that of the main
SLiMFinder program. If you have already run SLiMFinder on a dataset, you can input the job ID and
click "Get job" to jump straight to the results.

Additional parameter settings can be accessed using the tabs on the input page (Figure 8.2). These

match the commandline options listed above (Chapter 2.4) and should be set accordingly. Once
options have been set, the “Submit job” button will set SLiMFinder running. Running jobs can be
monitored or bookmarked for later access. Once a job has finished, an interactive results page (Figure

 8.3) will open to visualise and explore results. Full details can be found on the website.

NB. The webserver is not updated with every SLiMFinder update, so please check the Version
number. Furthermore, not all options are available through the web implementation.

Figure 8.1. SLiMFinder webserver front page.

42 SLiMFinder

Rich Edwards 11 February 2010

A.

B.

C.

Figure 8.2. SLiMFinder webserver options pages.

The SLiMFinder webserver itself contains help for these pages. A. Downloaded UniProt entries. B.
Alternative sequence input. C. Run options.

Short Linear Motif Finder 43

Rich Edwards 11 February 2010

Figure 8.3. SLiMFinder webserver main results page.

Summarised results for each motif are initially displayed. These can be expanded to reveal individual
occurrences in each protein for each motif. Alignments can be generated to explore the unmasked and
masked sequence context for each motif “(M|A)” or to examine the region around a specific motif
occurrence in a single protein (Plot). All visualisations can be exported as PNGs or high quality PDFs.

44 SLiMFinder

Rich Edwards 11 February 2010

9. Appendices

9.1. Troubleshooting & FAQ

Please also see general items in the PEAT Appendices document and contact me if you experience any
problems not covered.

� Many problems can arise when sequence names have underscores in them but the naming format
does not match known databases. (Typically, this might produce a “KeyError” during UPC
generation.) Try using gnspacc=F and hopefully this problem will go away.

� If you get hundreds/thousands of significant motifs, it might be that one or more input sequences
are too short for detectable BLAST homology using default settings. You can try tinkering with the
blast e-value cut-off (blaste=X) or, more safely, manual make the UPC file for such datasets (see

 6.2 for details).

9.2. QuickStart Guide

Download and install python from www.python.org.

Unzip slimfinder.zip in chosen directory. (A slimfinder subdirectory will be created.)

Download and install BLAST (Altschul et al. 1990) from NCBI if you have not already:
http://www.ncbi.nlm.nih.gov/blast/download.shtml.

Create a slimfinder.ini file in the slimfinder directory. This should contain any default parameter

settings and, most importantly, the path to the BLAST programs in the form: blastpath=X (e.g.
blastpath=c:/bioware/blast/). If running in Windows, this file should also contain the option

win32=T.

(Open a command-line window and) enter the chosen run directory containing the input files.

Run SLiMFinder, giving the installation path,
E.g. python c:\\bioware\\slimfinder\\slimfinder.py.

Results will be output to slimfinder.csv and SLiMFinder/*.* with run details in the slimfinder.log log
file.

By default, SLiMFinder will run on all *.dat and *.fas files in the directory. To specify a single file, use
the seqin=FILE command. To give an alternate list of files, use batch=LIST (e.g.

batch=datasets/*.fas)

See full details in this manual for explanation of outputs and command-line options.

9.3. References

���� Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990). "Basic local alignment search
tool." J Mol Biol 215(3): 403-10.

���� Davey NE, Shields DC & Edwards RJ (2006). "Slimdisc: Short, linear motif discovery, correcting
for common evolutionary descent." Nucleic Acids Res. 34(12): 3546-54.

���� Davey NE, Edwards RJ & Shields DC (2007). "The slimdisc server: Short, linear motif discovery
in proteins." Nucleic Acids Res 35(Web Server issue): W455-9.

���� Dosztanyi Z, Csizmok V, Tompa P & Simon I (2005). "Iupred: Web server for the prediction of
intrinsically unstructured regions of proteins based on estimated energy content." Bioinformatics.
21(16): 3433-4.

���� Edgar RC (2004). "Muscle: A multiple sequence alignment method with reduced time and space
complexity." BMC Bioinformatics 5(1): 113.

���� Edwards RJ. (2006). "Gopher: Generation of orthologous proteins using high-throughput
evolutionary relationships." from http://bioinformatics.ucd.ie/shields/software/gopher/.

Short Linear Motif Finder 45

Rich Edwards 11 February 2010

���� Edwards RJ. (2006). "Presto: Peptide regular expression search tool." from
http://bioinformatics.ucd.ie/shields/software/presto/.

���� Edwards RJ. (2006). "Rje_tree: Phylogenetic tree module." from
http://bioinformatics.ucd.ie/shields/software/rje_tree/index.html.

���� Edwards RJ. (2006). "Rje_seq: DNA/protein sequence module." from
http://bioinformatics.ucd.ie/shields/software/rje_seq/.

���� Edwards RJ & Davey NE. (2006). "Gablam: Global alignment from blast local alignment
modules." from http://www.southampton.ac.uk/~re1u06/software/gablam/.

���� Edwards RJ. (2007). "Slimsearch: Short linear motif search tool." from
http://bioinformatics.ucd.ie/shields/software/slimsearch/.

���� Edwards RJ, Davey NE & Shields DC (2007). "Slimfinder: A probabilistic method for identifying
over-represented, convergently evolved, short linear motifs in proteins." PLoS ONE 2(10): e967.

���� Edwards RJ, Davey NE & Shields DC (2008). "Comparimotif: Quick and easy comparisons of
sequence motifs." Bioinformatics 24(10): 1307-9.

���� Eisenberg D, Schwarz E, Komaromy M & Wall R (1984). "Analysis of membrane and surface
protein sequences with the hydrophobic moment plot." J Mol Biol 179(1): 125-42.

���� Felsenstein J (2005). "Phylip (phylogeny inference package) version 3.6." Distributed by the
author. Department of Genome Sciences, University of Washington, Seattle.

���� Higgins DG & Sharp PM (1988). "Clustal: A package for performing multiple sequence alignment
on a microcomputer." Gene 73(1): 237-44.

���� Janin J & Wodak S (1978). "Conformation of amino acid side-chains in proteins." J Mol Biol.
125(3): 357-86.

���� Livingstone CD & Barton GJ (1993). "Protein sequence alignments: A strategy for the hierarchical
analysis of residue conservation." Comput Appl Biosci 9(6): 745-56.

���� Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L & Russell
RB (2005). "Systematic discovery of new recognition peptides mediating protein interaction
networks." PLoS Biol. 3(12): e405.

���� Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I &
Sussman JL (2005). "Foldindex: A simple tool to predict whether a given protein sequence is
intrinsically unfolded." Bioinformatics. 21(16): 3435-8.

���� Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin
DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-
Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster
B, Helmer-Citterich M, Hunter WN, Aasland R & Gibson TJ (2003). "Elm server: A new resource
for investigating short functional sites in modular eukaryotic proteins." Nucleic Acids Res 31(13):
3625-30.

���� Rigoutsos I & Floratos A (1998). "Combinatorial pattern discovery in biological sequences: The
teiresias algorithm." Bioinformatics 14(1): 55-67.

���� Shannon CE (1997). "The mathematical theory of communication. 1963." MD. Comput. 14: 306-
317.

���� Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & Ideker
T (2003). "Cytoscape: A software environment for integrated models of biomolecular interaction
networks." Genome Res 13(11): 2498-504.

